Augmented Efficient BackProp for Backpropagation Learning in Deep Autoassociative Neural Networks

被引:0
|
作者
Embrechts, Mark J. [1 ]
Hargis, Blake J. [1 ]
Linton, Jonathan D. [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Ind & Syst Engn, Troy, NY 12180 USA
[2] Univ Ottawa, Sch Management, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; NONLINEAR PCA; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce Augmented Efficient BackProp as a strategy for applying the backpropagation algorithm to deep autoencoders, i.e., autoassociators with many hidden layers, without relying on a weight initialization using restricted Boltzmann machines. This training method is an extension of Efficient BackProp, first proposed by LeCun et al. [1], and is benchmarked on three different types of application datasets.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Dynamics of autoassociative neural networks
    Morinaga, S
    Yoshizawa, S
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 233 - 236
  • [22] Training Deep Spiking Neural Networks Using Backpropagation
    Lee, Jun Haeng
    Delbruck, Tobi
    Pfeiffer, Michael
    FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [23] On impulsive autoassociative neural networks
    Guan, ZH
    Lam, J
    Chen, GR
    NEURAL NETWORKS, 2000, 13 (01) : 63 - 69
  • [24] Stable tensor neural networks for efficient deep learning
    Newman, Elizabeth
    Horesh, Lior
    Avron, Haim
    Kilmer, Misha E.
    FRONTIERS IN BIG DATA, 2024, 7
  • [25] Memory-Efficient Backpropagation for Recurrent Neural Networks
    Ayoub, Issa
    Al Osman, Hussein
    ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, 11489 : 274 - 283
  • [26] Deep Generative Stochastic Networks Trainable by Backprop
    Bengio, Yoshua
    Thibodeau-Laufer, Eric
    Alain, Guillaume
    Yosinski, Jason
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 226 - 234
  • [27] Concept learning through deep reinforcement learning with memory-augmented neural networks
    Shi, Jing
    Xu, Jiaming
    Yao, Yiqun
    Xu, Bo
    NEURAL NETWORKS, 2019, 110 : 47 - 54
  • [28] The interchangeability of learning rate and gain in backpropagation neural networks
    Thimm, G
    Moerland, P
    Fiesler, E
    NEURAL COMPUTATION, 1996, 8 (02) : 451 - 460
  • [29] IMPROVING BACKPROPAGATION LEARNING USING AUXILIARY NEURAL NETWORKS
    FORTUNA, L
    GRAZIANI, S
    LOPRESTI, M
    MUSCATO, G
    INTERNATIONAL JOURNAL OF CONTROL, 1992, 55 (04) : 793 - 807
  • [30] A general backpropagation algorithm for feedforward neural networks learning
    Yu, XH
    Efe, MO
    Kaynak, O
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (01): : 251 - 254