Zero-Reference Fractional-Order Low-Light Image Enhancement Based on Retinex Theory

被引:2
|
作者
Zhang, Qiang [1 ]
Fu, Feiqi [2 ]
Zhang, Kai [3 ]
Lin, Feng [4 ]
Wang, Jian [1 ]
机构
[1] China Univ Petr East China, Coll Sci, Qingdao, Peoples R China
[2] China Univ Petr East China, Coll Geosci, Qingdao, Peoples R China
[3] China Univ Petr East China, Coll Petr Engn, Qingdao, Peoples R China
[4] China Univ Petr East China, Coll Control Sci & Engn, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
zero-reference learning; low-light image enhancement; fractional calculus; Retinex theory; HISTOGRAM EQUALIZATION; VARIATIONAL FRAMEWORK; DEEP MODEL;
D O I
10.1109/SSCI50451.2021.9659908
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The quality of images taken in an insufficiently lighting environment is degraded. These images limit the presentation of machine vision technology. To address the issue, many researchers have focused on enhancing low-light images. This paper presents a zero-reference learning method to enhance low-light images. A deep network is built for estimating the illumination component of the low-light image. We use the original image and the derivative graph to define a zero-reference loss function based on illumination constraints and priori conditions. Then the deep network is trained by minimizing the loss function. Final image is obtained according to the Retinex theory. In addition, we use fractional-order mask to preserve image details and naturalness. Experiments on several datasets demonstrate that the proposed algorithm can achieve low-light image enhancement. Experimental results indicate that the superiority of our algorithm over state-of-the-arts algorithms.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Low-Light Image Enhancement Algorithm Based on Deep Learning and Retinex Theory
    Lei, Chenyu
    Tian, Qichuan
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [22] Improved Retinex-Theory-Based Low-Light Image Enhancement Algorithm
    Wang, Jiarui
    Wang, Hanjia
    Sun, Yu
    Yang, Jie
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [23] The Modified Unsupervised Low-Light Image Enhancement Approach Based on the Retinex Theory
    Zhang, Yingchun
    Jiang, Shan
    Liu, Xuan
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 431 - 436
  • [24] Zero-reference deep learning for low-light image enhancement of underground utilities 3D reconstruction
    Su, Yang
    Wang, Jun
    Wang, Xiangyu
    Hu, Lei
    Yao, Yuan
    Shou, Wenchi
    Li, Danqi
    AUTOMATION IN CONSTRUCTION, 2023, 152
  • [25] Low-Light Image Enhancement Based On Retinex and Saliency Theories
    Hao, Pengcheng
    Wang, Shuang
    Li, Shupei
    Yang, Meng
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2594 - 2597
  • [26] A Joint Network for Low-Light Image Enhancement Based on Retinex
    Jiang, Yonglong
    Zhu, Jiahe
    Li, Liangliang
    Ma, Hongbing
    COGNITIVE COMPUTATION, 2024, 16 (06) : 3241 - 3259
  • [27] Image Enhancement of Low-Light Parking Space Based on Retinex
    Miao Z.
    Zhu L.
    Zhao C.
    Liu D.
    Li Y.
    Chen A.
    Qiche Gongcheng/Automotive Engineering, 2023, 45 (06): : 989 - 996
  • [28] Low-Light Image Enhancement Method Based on Retinex Theory by Improving Illumination Map
    Pan, Xinxin
    Li, Changli
    Pan, Zhigeng
    Yan, Jingwen
    Tang, Shiqiang
    Yin, Xinghui
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [29] Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation
    Li, Chongyi
    Guo, Chunle
    Loy, Chen Change
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (08) : 4225 - 4238
  • [30] Fractional structure and texture aware model for image Retinex and low-light enhancement
    Li, Chengxue
    He, Chuanjiang
    APPLIED MATHEMATICAL MODELLING, 2024, 130 : 496 - 513