Hamilton cycles in line graphs of 3-hypergraphs

被引:0
|
作者
Kaiser, Tomas [1 ]
Vrana, Petr
机构
[1] Univ West Bohemia, Dept Math, Plzen, Czech Republic
关键词
Hamilton cycle; Line graph; 3-hypergraph; PACKING; CLOSURE;
D O I
10.1016/j.disc.2022.113028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every 52-connected line graph of a rank 3 hypergraph is Hamiltonian. This is the first result of this type for hypergraphs of bounded rank other than ordinary graphs. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Packing tight Hamilton cycles in 3-uniform hypergraphs
    Frieze, Alan
    Krivelevich, Michael
    Loh, Po-Shen
    RANDOM STRUCTURES & ALGORITHMS, 2012, 40 (03) : 269 - 300
  • [32] Loose Hamilton Cycles in Random 3-Uniform Hypergraphs
    Frieze, Alan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [33] A Study on the Existence of Null Labelling for 3-Hypergraphs
    Di Marco, Niccolo
    Frosini, Andrea
    Kocay, William Lawrence
    COMBINATORIAL ALGORITHMS, IWOCA 2021, 2021, 12757 : 282 - 294
  • [34] CYCLES IN RANDOM GRAPHS AND HYPERGRAPHS
    KOLCHIN, VF
    ADVANCES IN APPLIED PROBABILITY, 1992, 24 (04) : 768 - 768
  • [35] A Note on Non-reconstructible 3-Hypergraphs
    William L. Kocay
    Graphs and Combinatorics, 2016, 32 : 1945 - 1963
  • [36] A Note on Edge-Disjoint Hamilton Cycles in Line Graphs
    Hao Li
    Weihua He
    Weihua Yang
    Yandong Bai
    Graphs and Combinatorics, 2016, 32 : 741 - 744
  • [37] A Note on Non-reconstructible 3-Hypergraphs
    Kocay, William L.
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 1945 - 1963
  • [38] A Note on Edge-Disjoint Hamilton Cycles in Line Graphs
    Li, Hao
    He, Weihua
    Yang, Weihua
    Bai, Yandong
    GRAPHS AND COMBINATORICS, 2016, 32 (02) : 741 - 744
  • [39] Hamilton cycles in hypergraphs below the Dirac threshold
    Garbe, Frederik
    Mycroft, Richard
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 133 : 153 - 210
  • [40] Hamilton l-cycles in uniform hypergraphs
    Kuehn, Daniela
    Mycroft, Richard
    Osthus, Deryk
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (07) : 910 - 927