A Note on Edge-Disjoint Hamilton Cycles in Line Graphs

被引:8
|
作者
Li, Hao [1 ,2 ]
He, Weihua [1 ,3 ]
Yang, Weihua [4 ]
Bai, Yandong [1 ]
机构
[1] Univ Paris 11, CNRS, Rech Informat Lab, UMR 8623, F-91405 Orsay, France
[2] Jianghan Univ, Inst Interdisciplinary Res, Wuhan, Peoples R China
[3] Guangdong Univ Technol, Dept Appl Math, Guangzhou, Guangdong, Peoples R China
[4] Taiyuan Univ Technol, Dept Math, Taiyuan, Peoples R China
关键词
Hamilton cycle; Edge-disjoint Hamilton cycles; Line graph; CLAW-FREE GRAPHS; CONNECTEDNESS;
D O I
10.1007/s00373-015-1606-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that if a graph G contains a spanning closed trail, then its line graph L(G) is Hamiltonian. In this note, it is proved that if a graph G with minimum degree at least 4k has k edge-disjoint spanning closed trails, then L(G) contains k edge-disjoint Hamilton cycles.
引用
收藏
页码:741 / 744
页数:4
相关论文
共 50 条
  • [1] A Note on Edge-Disjoint Hamilton Cycles in Line Graphs
    Hao Li
    Weihua He
    Weihua Yang
    Yandong Bai
    Graphs and Combinatorics, 2016, 32 : 741 - 744
  • [2] EDGE-DISJOINT HAMILTON CYCLES IN GRAPHS
    LI, H
    ZHU, YJ
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 311 - 322
  • [3] Edge-disjoint Hamilton cycles in graphs
    Christofides, Demetres
    Kuehn, Daniela
    Osthus, Deryk
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (05) : 1035 - 1060
  • [4] Edge-disjoint Hamilton cycles in graphs
    1600, Publ by New York Acad of Sciences, New York, NY, USA (576):
  • [5] Edge-disjoint Hamilton Cycles in Random Graphs
    Knox, Fiachra
    Kuehn, Daniela
    Osthus, Deryk
    RANDOM STRUCTURES & ALGORITHMS, 2015, 46 (03) : 397 - 445
  • [6] EDGE-DISJOINT HAMILTON CYCLES IN REGULAR GRAPHS OF LARGE DEGREE
    JACKSON, B
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1979, 19 (FEB): : 13 - 16
  • [7] EDGE-DISJOINT HAMILTONIAN CYCLES IN GRAPHS
    LI, MC
    LIU, ZH
    CHINESE SCIENCE BULLETIN, 1991, 36 (12): : 1055 - 1056
  • [8] EDGE-DISJOINT HAMILTONIAN CYCLES IN GRAPHS
    WAN, HH
    UTILITAS MATHEMATICA, 1993, 43 : 245 - 252
  • [9] EDGE-DISJOINT HAMILTONIAN CYCLES IN GRAPHS
    李明楚
    刘振宏
    ChineseScienceBulletin, 1991, (12) : 1055 - 1056
  • [10] Edge disjoint Hamilton cycles in graphs
    Li, GJ
    JOURNAL OF GRAPH THEORY, 2000, 35 (01) : 8 - 20