Human action recognition using descriptor based on selective finite element analysis

被引:3
|
作者
Kapoor, Rajiv [1 ]
Mishra, Om [1 ]
Tripathi, Madan Mohan [2 ]
机构
[1] Delhi Technol Univ, Dept Elect & Commun, Bawana Rd, Delhi 110042, India
[2] Delhi Technol Univ, Dept Elect Engn, Bawana Rd, Delhi 110042, India
关键词
finite element analysis (FEA); stiffness matrix; discretization; support vector machine; SILHOUETTE; CLASSIFIER;
D O I
10.2478/jee-2019-0077
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a novel local descriptor evaluated from the Finite Element Analysis for human action recognition. This local descriptor represents the distinctive human poses in the form of the stiffness matrix. This stiffness matrix gives the information of motion as well as shape change of the human body while performing an action. Initially, the human body is represented in the silhouette form. Most prominent points of the silhouette are then selected. This silhouette is discretized into several finite small triangle faces (elements) where the prominent points of the boundaries are the vertices of the triangles. The stiffness matrix of each triangle is then calculated. The feature vector representing the action video frame is constructed by combining all stiffness matrices of all possible triangles. These feature vectors are given to the Radial Basis Function-Support Vector Machine (RBF-SVM) classifier. The proposed method shows its superiority over other existing state-of-the-art methods on the challenging datasets Weizmann, KTH, Ballet, and IXMAS.
引用
收藏
页码:443 / 453
页数:11
相关论文
共 50 条
  • [31] Motion keypoint trajectory and covariance descriptor for human action recognition
    Yun Yi
    Hanli Wang
    The Visual Computer, 2018, 34 : 391 - 403
  • [32] A Human Action Descriptor Based on Motion Coordination
    Falco, Pietro
    Saveriano, Matteo
    Hasany, Eka Gibran
    Kirk, Nicholas H.
    Lee, Dongheui
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (02): : 811 - 818
  • [33] Kinematic joint descriptor and depth motion descriptor with convolutional neural networks for human action recognition
    Rani, S. Sandhya
    Naidu, G. Apparao
    Shree, V. Usha
    MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 3164 - 3173
  • [34] Efficient human action recognition using histograms of motion gradients and VLAD with descriptor shape information
    Ionut C. Duta
    Jasper R. R. Uijlings
    Bogdan Ionescu
    Kiyoharu Aizawa
    Alexander G. Hauptmann
    Nicu Sebe
    Multimedia Tools and Applications, 2017, 76 : 22445 - 22472
  • [35] Efficient human action recognition using histograms of motion gradients and VLAD with descriptor shape information
    Duta, Ionut C.
    Uijlings, Jasper R. R.
    Ionescu, Bogdan
    Aizawa, Kiyoharu
    Hauptmann, Alexander G.
    Sebe, Nicu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (21) : 22445 - 22472
  • [36] Video-Based Human Action Recognition Using Kernel Relevance Analysis
    Fernandez-Ramirez, Jorge
    Alvarez-Meza, Andres
    Orozco-Gutierrez, Alvaro
    ADVANCES IN VISUAL COMPUTING, ISVC 2018, 2018, 11241 : 116 - 125
  • [37] Action recognition using edge trajectories and motion acceleration descriptor
    Xiaofang Wang
    Chun Qi
    Machine Vision and Applications, 2016, 27 : 861 - 875
  • [38] Robust Suspicious Action Recognition Approach Using Pose Descriptor
    Ahmed, Waqas
    Yousaf, Muhammad Haroon
    Yasin, Amanullah
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [39] Action recognition in depth videos using hierarchical gaussian descriptor
    Xuan Son Nguyen
    Abdel-Illah Mouaddib
    Thanh Phuong Nguyen
    Laurent Jeanpierre
    Multimedia Tools and Applications, 2018, 77 : 21617 - 21652
  • [40] Action recognition using edge trajectories and motion acceleration descriptor
    Wang, Xiaofang
    Qi, Chun
    MACHINE VISION AND APPLICATIONS, 2016, 27 (06) : 861 - 875