Action recognition using edge trajectories and motion acceleration descriptor

被引:13
|
作者
Wang, Xiaofang [1 ,2 ]
Qi, Chun [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Shaanxi, Peoples R China
[2] Qilu Univ Technol, Sch Elect Engn & Automat, Jinan 250353, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; Edge trajectories; Motion acceleration histogram; SPATIOTEMPORAL CONTEXT; FEATURES; CLASSIFICATION; VIDEOS;
D O I
10.1007/s00138-016-0746-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method for action recognition based on edge trajectories. First, to exploit long-term motion information for action representation more effectively, we propose to track edge points across video frames to extract spatiotemporal edge trajectories and use the ones derived from the edge points located on the boundaries of action-related area to describe actions. Second, besides the existing shape, histogram of oriented gradients, histogram of optical flow and motion boundary histogram, a new trajectory descriptor named histogram of motion acceleration is introduced, which is computed using the temporal derivative of the optical flow in the spatiotemporal neighborhood centered along a trajectory and describes the temporal relative motion of actions. Finally, using Fisher vector to encode trajectory descriptors and MKL-based multi-class SVM to predict action labels, we evaluate the proposed approach on seven benchmark datasets, namely KTH, ADL, UT-Interaction, UCF sports, YouTube, HMDB51 and UCF101. The experimental results demonstrate the effectiveness of our method.
引用
收藏
页码:861 / 875
页数:15
相关论文
共 50 条
  • [1] Action recognition using edge trajectories and motion acceleration descriptor
    Xiaofang Wang
    Chun Qi
    Machine Vision and Applications, 2016, 27 : 861 - 875
  • [2] Criminal action recognition using spatiotemporal human motion acceleration descriptor
    Mir, Abinta Mehmood
    Yousaf, Muhammad Haroon
    Dawood, Hassan
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (06)
  • [3] Action recognition using length-variable edge trajectory and spatio-temporal motion skeleton descriptor
    Weng, Zhengkui
    Guan, Yepeng
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2018,
  • [4] Action recognition using length-variable edge trajectory and spatio-temporal motion skeleton descriptor
    Zhengkui Weng
    Yepeng Guan
    EURASIP Journal on Image and Video Processing, 2018
  • [5] HSGA: A Novel Acceleration Descriptor for Human Action Recognition
    Edison, Anitha
    Jiji, C., V
    2015 FIFTH NATIONAL CONFERENCE ON COMPUTER VISION, PATTERN RECOGNITION, IMAGE PROCESSING AND GRAPHICS (NCVPRIPG), 2015,
  • [6] View Invariant Human Action Recognition Using Improved Motion Descriptor
    Sivarathinabala, M.
    Abirami, S.
    Baskaran, R.
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 3, 2015, 33
  • [7] Human Action Recognition Using Adaptive Local Motion Descriptor in Spark
    Uddin, M. D. Azher
    Joolee, Joolekha Bibi
    Alam, Aftab
    Lee, Young-Koo
    IEEE ACCESS, 2017, 5 : 21157 - 21167
  • [8] A Probabilistic Approach for Human Action Recognition using Motion Trajectories
    Chalamala, Srinivasa Rao
    Kumar, Prasanna A. L. P.
    2016 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, MODELLING AND SIMULATION (ISMS), 2016, : 185 - 190
  • [9] Human action and event recognition using a novel descriptor based on improved dense trajectories
    Mukherjee, Snehasis
    Singh, Krit Karan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (11) : 13661 - 13678
  • [10] Human action and event recognition using a novel descriptor based on improved dense trajectories
    Snehasis Mukherjee
    Krit Karan Singh
    Multimedia Tools and Applications, 2018, 77 : 13661 - 13678