Action recognition using edge trajectories and motion acceleration descriptor

被引:13
|
作者
Wang, Xiaofang [1 ,2 ]
Qi, Chun [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Shaanxi, Peoples R China
[2] Qilu Univ Technol, Sch Elect Engn & Automat, Jinan 250353, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; Edge trajectories; Motion acceleration histogram; SPATIOTEMPORAL CONTEXT; FEATURES; CLASSIFICATION; VIDEOS;
D O I
10.1007/s00138-016-0746-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method for action recognition based on edge trajectories. First, to exploit long-term motion information for action representation more effectively, we propose to track edge points across video frames to extract spatiotemporal edge trajectories and use the ones derived from the edge points located on the boundaries of action-related area to describe actions. Second, besides the existing shape, histogram of oriented gradients, histogram of optical flow and motion boundary histogram, a new trajectory descriptor named histogram of motion acceleration is introduced, which is computed using the temporal derivative of the optical flow in the spatiotemporal neighborhood centered along a trajectory and describes the temporal relative motion of actions. Finally, using Fisher vector to encode trajectory descriptors and MKL-based multi-class SVM to predict action labels, we evaluate the proposed approach on seven benchmark datasets, namely KTH, ADL, UT-Interaction, UCF sports, YouTube, HMDB51 and UCF101. The experimental results demonstrate the effectiveness of our method.
引用
收藏
页码:861 / 875
页数:15
相关论文
共 50 条
  • [31] TRAJECTORIES-BASED MOTION NEIGHBORHOOD FEATURE FOR HUMAN ACTION RECOGNITION
    Xiao, Xiang
    Hu, Haifeng
    Wang, Weixuan
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4147 - 4151
  • [32] Combined trajectories for action recognition based on saliency detection and motion boundary
    Wang, Xiaofang
    Qi, Chun
    Lin, Fei
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2017, 57 : 91 - 102
  • [33] Robust Suspicious Action Recognition Approach Using Pose Descriptor
    Ahmed, Waqas
    Yousaf, Muhammad Haroon
    Yasin, Amanullah
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [34] Action recognition in depth videos using hierarchical gaussian descriptor
    Xuan Son Nguyen
    Abdel-Illah Mouaddib
    Thanh Phuong Nguyen
    Laurent Jeanpierre
    Multimedia Tools and Applications, 2018, 77 : 21617 - 21652
  • [35] Action recognition in depth videos using hierarchical gaussian descriptor
    Nguyen, Xuan Son
    Mouaddib, Abdel-Illah
    Thanh Phuong Nguyen
    Jeanpierre, Laurent
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (16) : 21617 - 21652
  • [36] Human Action Recognition Using Spatio-Temoporal Descriptor
    Li, Chuanzhen
    Su, Bailiang
    Liu, Yin
    Wang, Hui
    Wang, Jingling
    2013 6TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), VOLS 1-3, 2013, : 107 - 111
  • [37] Action recognition using 3D DAISY descriptor
    Cao, Xiaochun
    Zhang, Hua
    Deng, Chao
    Liu, Qiguang
    Liu, Hanyu
    MACHINE VISION AND APPLICATIONS, 2014, 25 (01) : 159 - 171
  • [38] Action recognition using 3D DAISY descriptor
    Xiaochun Cao
    Hua Zhang
    Chao Deng
    Qiguang Liu
    Hanyu Liu
    Machine Vision and Applications, 2014, 25 : 159 - 171
  • [39] Human motion recognition using clay representation of trajectories
    Lai, Yu-Chun
    Liao, Hong-Yuan Mark
    IIH-MSP: 2006 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, PROCEEDINGS, 2006, : 335 - +
  • [40] Action recognition by using trajectories from omnidirectional images
    Matsumura, A
    Iwai, Y
    Yachida, M
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 2369 - 2374