A characterization of chain probe graphs

被引:7
|
作者
Golumbic, Martin C. [1 ,3 ,4 ]
Maffray, Frederic [2 ]
Morel, Gregory
机构
[1] Univ Haifa, Caesarea Rothschild Inst & Dept Comp Sci, Haifa, Israel
[2] CNRS, Lab G SCOP, Grenoble, France
[3] Univ Haifa, Caesarea Rothschild Inst, IL-31999 Haifa, Israel
[4] Univ Haifa, Dept Comp Sci, IL-31999 Haifa, Israel
关键词
RECOGNITION;
D O I
10.1007/s10479-009-0584-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A chain probe graph is a graph that admits an independent set S of vertices and a set F of pairs of elements of S such that G+F is a chain graph (i.e., a 2K (2)-free bipartite graph). We show that chain probe graphs are exactly the bipartite graphs that do not contain as an induced subgraph a member of a family of six forbidden subgraphs, and deduce an O(n (2)) recognition algorithm.
引用
收藏
页码:175 / 183
页数:9
相关论文
共 50 条
  • [21] On probe 2-clique graphs and probe diamond-free graphs
    Bonomo, Flavia
    de Figueiredo, Celina M. H.
    Duran, Guillermo
    Grippo, Luciano N.
    Safe, Martin D.
    Szwarcfiter, Jayme L.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 187 - 200
  • [22] Probe threshold and probe trivially perfect graphs
    Bayer, Daniel
    Le, Van Bang
    de Ridder, H. N.
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (47-49) : 4812 - 4822
  • [23] Tree spanners for bipartite graphs and probe interval graphs
    Brandstädt, A
    Dragan, FF
    Le, HO
    Le, VB
    Uehara, R
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2003, 2880 : 106 - 118
  • [24] Tree spanners for bipartite graphs and probe interval graphs
    Brandstaedt, Andreas
    Dragan, Feodor F.
    Le, Hoang-Oanh
    Le, Van Bang
    Uehara, Ryuhei
    ALGORITHMICA, 2007, 47 (01) : 27 - 51
  • [25] Tree Spanners for Bipartite Graphs and Probe Interval Graphs
    Andreas Brandstadt
    Feodor F. Dragan
    Hoang-Oanh Le
    Van Bang Le
    Ryuhei Uehara
    Algorithmica, 2007, 47 : 27 - 51
  • [26] Partitioned probe comparability graphs
    Chandler, David B.
    Chang, Maw-Shang
    Kloks, Ton
    Liu, Jiping
    Peng, Sheng-Lung
    THEORETICAL COMPUTER SCIENCE, 2008, 396 (1-3) : 212 - 222
  • [27] Tagged Probe Interval Graphs
    Li Sheng
    Chi Wang
    Peisen Zhang
    Journal of Combinatorial Optimization, 2001, 5 : 133 - 142
  • [28] Tagged probe interval graphs
    Sheng, L
    Wang, C
    Zhang, PS
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2001, 5 (01) : 133 - 142
  • [29] Partial Chain Graphs
    Shahistha
    Bhat, K. Arathi
    Sudhakara, G.
    ENGINEERING LETTERS, 2022, 30 (01)
  • [30] Bandwidth of chain graphs
    Charles Univ, Prague, Czech Republic
    Inf Process Lett, 6 (313-315):