Exact limit theorems for restricted integer partitions

被引:0
|
作者
Antonir, Asaf Cohen [1 ]
Shapira, Asaf [2 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Math, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会;
关键词
Number theory; Partition function; Elementary proofs; ASYMPTOTIC FORMUL-AE;
D O I
10.1016/j.aim.2022.108554
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a set of positive integers A, let p(A)(n) denote the number of ways to write n as a sum of integers from A, and let p(n) denote the usual partition function. In the early 40s, Erdos extended the classical Hardy-Ramanujan formula for p(n) by showing that A has density alpha if and only if log p(A)(n) similar to log p(alpha n). Nathanson asked if Erdos's theorem holds also with respect to A's lower density, namely, whether A has lower-density alpha if and only if log p(A)(n)/log p(alpha n) has lower limit 1. We answer this question negatively by constructing, for every alpha > 0, a set of integers A of lower density alpha, satisfying lim inf(n ->infinity) log p(A)(n)/log p(alpha n) >= (root 6/pi - o(alpha)(1)) log(1/alpha). We further show that the above bound is best possible (up to the o(alpha)(1) term), thus determining the exact extremal relation between the lower density of a set of integers and the lower limit of its partition function. We also prove an analogous theorem with respect to the upper density of a set of integers, answering another question of Nathanson. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Limit theorems for the number of summands in integer partitions
    Hwang, HK
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 96 (01) : 89 - 126
  • [2] A central limit theorem for integer partitions
    Manfred Madritsch
    Stephan Wagner
    Monatshefte für Mathematik, 2010, 161 : 85 - 114
  • [3] A central limit theorem for integer partitions
    Madritsch, Manfred
    Wagner, Stephan
    MONATSHEFTE FUR MATHEMATIK, 2010, 161 (01): : 85 - 114
  • [4] LIMIT-THEOREMS FOR RANDOM PARTITIONS
    MOLCHANOV, SA
    REZNIKOVA, AY
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1983, 27 (02) : 310 - 323
  • [5] Integer partitions with restricted odd and even parts
    Saikia, Nipen
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [6] ESTIMATE OF THE NUMBER OF RESTRICTED INTEGER-PARTITIONS
    Ratsaby, Joel
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (02) : 222 - 233
  • [7] Exact solutions of rectangular partitions via integer programming
    De Meneses, CN
    De Souza, CC
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2000, 10 (05) : 477 - 522
  • [8] A central limit theorem for integer partitions into small powers
    Lipnik, Gabriel F.
    Madritsch, Manfred G.
    Tichy, Robert F.
    MONATSHEFTE FUR MATHEMATIK, 2024, 203 (01): : 149 - 173
  • [9] A central limit theorem for integer partitions into small powers
    Gabriel F. Lipnik
    Manfred G. Madritsch
    Robert F. Tichy
    Monatshefte für Mathematik, 2024, 203 : 149 - 173
  • [10] Some limit theorems with respect to constrained permutations and partitions
    Chenying Wang
    István Mező
    Monatshefte für Mathematik, 2017, 182 : 155 - 164