Number theory;
Partition function;
Elementary proofs;
ASYMPTOTIC FORMUL-AE;
D O I:
10.1016/j.aim.2022.108554
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
For a set of positive integers A, let p(A)(n) denote the number of ways to write n as a sum of integers from A, and let p(n) denote the usual partition function. In the early 40s, Erdos extended the classical Hardy-Ramanujan formula for p(n) by showing that A has density alpha if and only if log p(A)(n) similar to log p(alpha n). Nathanson asked if Erdos's theorem holds also with respect to A's lower density, namely, whether A has lower-density alpha if and only if log p(A)(n)/log p(alpha n) has lower limit 1. We answer this question negatively by constructing, for every alpha > 0, a set of integers A of lower density alpha, satisfying lim inf(n ->infinity) log p(A)(n)/log p(alpha n) >= (root 6/pi - o(alpha)(1)) log(1/alpha). We further show that the above bound is best possible (up to the o(alpha)(1) term), thus determining the exact extremal relation between the lower density of a set of integers and the lower limit of its partition function. We also prove an analogous theorem with respect to the upper density of a set of integers, answering another question of Nathanson. (C) 2022 Elsevier Inc. All rights reserved.
机构:
Seoul Natl Univ Sci & Technol, Sch Liberal Arts, 232 Gongneung Ro, Seoul 1811, South KoreaSeoul Natl Univ Sci & Technol, Sch Liberal Arts, 232 Gongneung Ro, Seoul 1811, South Korea
机构:
Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal & Number The, ZA-2050 Johannesburg, South AfricaUniv Witwatersrand, John Knopfmacher Ctr Applicable Anal & Number The, ZA-2050 Johannesburg, South Africa
Knopfmacher, Arnold
Munagi, Augustine O.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal & Number The, ZA-2050 Johannesburg, South AfricaUniv Witwatersrand, John Knopfmacher Ctr Applicable Anal & Number The, ZA-2050 Johannesburg, South Africa
机构:
Johannes Kepler Univ Linz, Res Inst Symbol Computat, Altenberger Str 69, A-4040 Linz, AustriaJohannes Kepler Univ Linz, Res Inst Symbol Computat, Altenberger Str 69, A-4040 Linz, Austria
Banerjee, Koustav
Bhattacharjee, Sreerupa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, CanadaJohannes Kepler Univ Linz, Res Inst Symbol Computat, Altenberger Str 69, A-4040 Linz, Austria
Bhattacharjee, Sreerupa
Dastidar, Manosij Ghosh
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Wien, Wiedner Hauptstr 8-10-104, A-1040 Vienna, AustriaJohannes Kepler Univ Linz, Res Inst Symbol Computat, Altenberger Str 69, A-4040 Linz, Austria
Dastidar, Manosij Ghosh
Mahanta, Pankaj Jyoti
论文数: 0引用数: 0
h-index: 0
机构:
Gonit Sora, Dhalpur 784165, Assam, IndiaJohannes Kepler Univ Linz, Res Inst Symbol Computat, Altenberger Str 69, A-4040 Linz, Austria
Mahanta, Pankaj Jyoti
Saikia, Manjil P.
论文数: 0引用数: 0
h-index: 0
机构:
Cardiff Univ, Sch Math, Cardiff CF24 4AG, WalesJohannes Kepler Univ Linz, Res Inst Symbol Computat, Altenberger Str 69, A-4040 Linz, Austria