Exact limit theorems for restricted integer partitions

被引:0
|
作者
Antonir, Asaf Cohen [1 ]
Shapira, Asaf [2 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Math, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会;
关键词
Number theory; Partition function; Elementary proofs; ASYMPTOTIC FORMUL-AE;
D O I
10.1016/j.aim.2022.108554
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a set of positive integers A, let p(A)(n) denote the number of ways to write n as a sum of integers from A, and let p(n) denote the usual partition function. In the early 40s, Erdos extended the classical Hardy-Ramanujan formula for p(n) by showing that A has density alpha if and only if log p(A)(n) similar to log p(alpha n). Nathanson asked if Erdos's theorem holds also with respect to A's lower density, namely, whether A has lower-density alpha if and only if log p(A)(n)/log p(alpha n) has lower limit 1. We answer this question negatively by constructing, for every alpha > 0, a set of integers A of lower density alpha, satisfying lim inf(n ->infinity) log p(A)(n)/log p(alpha n) >= (root 6/pi - o(alpha)(1)) log(1/alpha). We further show that the above bound is best possible (up to the o(alpha)(1) term), thus determining the exact extremal relation between the lower density of a set of integers and the lower limit of its partition function. We also prove an analogous theorem with respect to the upper density of a set of integers, answering another question of Nathanson. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Constrained integer partitions
    Borgs, C
    Chayes, JT
    Mertens, S
    Pittel, B
    LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 : 59 - 68
  • [32] Integer Partitions and Convexity
    Bouroubi, Sadek
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (06)
  • [33] BIASES IN INTEGER PARTITIONS
    Kim, Byungchan
    Kim, Eunmi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (02) : 177 - 186
  • [34] Intersecting integer partitions
    Borg, Peter
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 66 : 265 - 275
  • [35] Gaps in integer partitions
    Knopfmacher, Arnold
    Warlimont, Richard
    UTILITAS MATHEMATICA, 2006, 71 : 257 - 267
  • [36] Successions in integer partitions
    Arnold Knopfmacher
    Augustine O. Munagi
    The Ramanujan Journal, 2009, 18 : 239 - 255
  • [37] Successions in integer partitions
    Knopfmacher, Arnold
    Munagi, Augustine O.
    RAMANUJAN JOURNAL, 2009, 18 (03): : 239 - 255
  • [38] Probabilistic Divide-and-Conquer: A New Exact Simulation Method, With Integer Partitions as an Example
    Arratia, Richard
    deSalvo, Stephen
    COMBINATORICS PROBABILITY & COMPUTING, 2016, 25 (03): : 324 - 351
  • [39] Parity biases in partitions and restricted partitions
    Banerjee, Koustav
    Bhattacharjee, Sreerupa
    Dastidar, Manosij Ghosh
    Mahanta, Pankaj Jyoti
    Saikia, Manjil P.
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 103
  • [40] Unified derivation of the limit shape for multiplicative ensembles of random integer partitions with equiweighted parts
    Bogachev, Leonid V.
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (02) : 227 - 266