A central limit theorem for integer partitions into small powers

被引:0
|
作者
Gabriel F. Lipnik
Manfred G. Madritsch
Robert F. Tichy
机构
[1] Graz University of Technology,Institute of Analysis and Number Theory
[2] Université de Lorraine,undefined
[3] IECL,undefined
[4] CNRS,undefined
来源
关键词
Integer partitions; Partition function; Central limit theorem; Saddle-point method; Mellin transform; 11P82; 05A17; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
The study of the well-known partition function p(n) counting the number of solutions to n=a1+⋯+aℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = a_{1} + \dots + a_{\ell }$$\end{document} with integers 1≤a1≤⋯≤aℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le a_{1} \le \dots \le a_{\ell }$$\end{document} has a long history in number theory and combinatorics. In this paper, we study a variant, namely partitions of integers into n=a1α+⋯+aℓα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} n=\left\lfloor a_1^\alpha \right\rfloor +\cdots +\left\lfloor a_\ell ^\alpha \right\rfloor \end{aligned}$$\end{document}with 1≤a1<⋯<aℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le a_1< \cdots < a_\ell $$\end{document} and some fixed 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \alpha < 1$$\end{document}. In particular, we prove a central limit theorem for the number of summands in such partitions, using the saddle-point method.
引用
收藏
页码:149 / 173
页数:24
相关论文
共 50 条