Combining Remote and In-situ Sensing for Persistent Monitoring of Water Quality

被引:1
|
作者
Rojas, Cesar A. [1 ]
Reis, Gregory M. [1 ]
Albayrak, Arif R. [2 ,3 ]
Osmanoglu, Batuhan [2 ]
Bobadilla, Leonardo [1 ]
Smith, Ryan N. [4 ]
机构
[1] Florida Int Univ, Knight Fdn Sch Comp & Informat Sci, Miami, FL 33199 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA
[4] Florida Int Univ, Inst Environm, Miami, FL 33199 USA
来源
OCEANS 2022 | 2022年
关键词
remote sensing; machine learning; water quality; logistic regression; estimation; robots; chlorophyll-a; CHLOROPHYLL-A CONCENTRATION; LANDSAT; MODEL;
D O I
10.1109/OCEANSChennai45887.2022.9775339
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Many studies suggest that water quality parameters can be estimated by applying statistical and machine learning methods using remote sensing or in-situ data. However, identifying best practices for implementing solutions appears to be done on a case-by-case basis. In our case, we have in-situ data that covers a large period, but only small areas of Biscayne Bay, Florida. In this paper, we combine available in-situ data with remote sensing data captured by Landsat 8 OLI-TIRS Collection 2 Level 2(L8), Sentinel-2 L2A(S2), and Sentinel-3 OLCI L1B(S3). The combined data set is for use in a water quality parameter estimation application. Our contributions are two-fold. First, we present a pipeline for data collection, processing, and co-location that results in a usable data set of combined remote sensing and in-situ data. Second, we propose a classification model using the combined data set to identify areas of interest for future data collection missions based on chlorophyll-a in-situ measurements. To further prove our methodology, we conduct a data collection mission using one of the predicted paths from our model.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Overview of the Application of Remote Sensing in Effective Monitoring of Water Quality Parameters
    Adjovu, Godson Ebenezer
    Stephen, Haroon
    James, David
    Ahmad, Sajjad
    REMOTE SENSING, 2023, 15 (07)
  • [42] Monitoring water quality using optical remote sensing data.
    Sorensen, K
    Magnusson, J
    Severinsen, G
    27TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, PROCEEDINGS: INFORMATION FOR SUSTAINABILITY, 1998, : 147 - 150
  • [43] Remote sensing of water quality monitoring using an airborne imaging spectrometer
    Shu, Xiaozhou
    Wang, Junfa
    Shen, Mingming
    Kuang, Dingbo
    Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2000, 19 (04): : 273 - 276
  • [44] Monitoring of Water Quality in the Coastal Zone Using Optical Remote Sensing
    Brockmann, Carsten
    Stelzer, Kerstin
    OCEANS 2009 - EUROPE, VOLS 1 AND 2, 2009, : 1160 - 1164
  • [45] Improving Inland Water Quality Monitoring through Remote Sensing Techniques
    Ogashawara, Igor
    Moreno-Madrinan, Max J.
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2014, 3 (04): : 1234 - 1255
  • [46] Monitoring water quality in the lower Kansas River using remote sensing
    Tufillaro, Nicholas
    Grötsch, Philipp
    Lalović, Ivan
    Moitié, Sara De
    Zeitlin, Luke
    Zurita, Omar
    River, 2024, 3 (03): : 284 - 303
  • [47] Water Quality Monitoring Using Remote Sensing and an Artificial Neural Network
    Chebud, Yirgalem
    Naja, Ghinwa M.
    Rivero, Rosanna G.
    Melesse, Assefa M.
    WATER AIR AND SOIL POLLUTION, 2012, 223 (08): : 4875 - 4887
  • [48] Water Quality Monitoring Using Remote Sensing and an Artificial Neural Network
    Yirgalem Chebud
    Ghinwa M. Naja
    Rosanna G. Rivero
    Assefa M. Melesse
    Water, Air, & Soil Pollution, 2012, 223 : 4875 - 4887
  • [49] Research Progress on Remote Sensing Monitoring of Lake Water Quality Parameters
    Wang S.-M.
    Qin B.-Q.
    Huanjing Kexue/Environmental Science, 2023, 44 (03): : 1228 - 1243
  • [50] Progress in research on inland water quality monitoring based on remote sensing
    Wang B.
    Huang J.
    Guo H.
    Xu W.
    Zeng Q.
    Mai Y.
    Zhu X.
    Tian S.
    Water Resources Protection, 2022, 38 (03): : 117 - 124