Combining Remote and In-situ Sensing for Persistent Monitoring of Water Quality

被引:1
|
作者
Rojas, Cesar A. [1 ]
Reis, Gregory M. [1 ]
Albayrak, Arif R. [2 ,3 ]
Osmanoglu, Batuhan [2 ]
Bobadilla, Leonardo [1 ]
Smith, Ryan N. [4 ]
机构
[1] Florida Int Univ, Knight Fdn Sch Comp & Informat Sci, Miami, FL 33199 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA
[4] Florida Int Univ, Inst Environm, Miami, FL 33199 USA
来源
OCEANS 2022 | 2022年
关键词
remote sensing; machine learning; water quality; logistic regression; estimation; robots; chlorophyll-a; CHLOROPHYLL-A CONCENTRATION; LANDSAT; MODEL;
D O I
10.1109/OCEANSChennai45887.2022.9775339
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Many studies suggest that water quality parameters can be estimated by applying statistical and machine learning methods using remote sensing or in-situ data. However, identifying best practices for implementing solutions appears to be done on a case-by-case basis. In our case, we have in-situ data that covers a large period, but only small areas of Biscayne Bay, Florida. In this paper, we combine available in-situ data with remote sensing data captured by Landsat 8 OLI-TIRS Collection 2 Level 2(L8), Sentinel-2 L2A(S2), and Sentinel-3 OLCI L1B(S3). The combined data set is for use in a water quality parameter estimation application. Our contributions are two-fold. First, we present a pipeline for data collection, processing, and co-location that results in a usable data set of combined remote sensing and in-situ data. Second, we propose a classification model using the combined data set to identify areas of interest for future data collection missions based on chlorophyll-a in-situ measurements. To further prove our methodology, we conduct a data collection mission using one of the predicted paths from our model.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] FerryBox and MERIS - Monitoring of coastal and shelf sea ecosystems by in-situ and remote sensing
    Petersen, Wilhelm
    Krasemann, Hansjoerg
    OCEANS 2007 - EUROPE, VOLS 1-3, 2007, : 269 - 274
  • [22] The next step in shallow coral reef monitoring: Combining remote sensing and in situ approaches
    Scopelitis, Julie
    Andrefouet, Serge
    Phinn, Stuart
    Arroyo, Lara
    Dalleau, Mayeul
    Cros, Annick
    Chabanet, Pascale
    MARINE POLLUTION BULLETIN, 2010, 60 (11) : 1956 - 1968
  • [23] Remote Sensing for Water Quality Monitoring in Apalachicola Bay, USA
    Huang, Wenrui
    Chen, Shuisen
    Yang, Xiaojun
    ADVANCES IN EARTH OBSERVATION OF GLOBAL CHANGE, 2010, : 69 - 78
  • [24] An investigation into water quality monitoring models using remote sensing
    Ness, Eric
    Fatima, Arooj
    Maktabdar-Oghaz, Mahdi
    Luca, Cristina
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2025, 46 (04) : 1742 - 1772
  • [25] Water quality monitoring based on multiple remote sensing imageries
    Li, Shijin
    Zhu, Haichen
    Chen, Deqing
    Wang, Lingli
    2016 4rth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), 2016,
  • [26] Applications of remote sensing techniques to inland water quality monitoring
    Zhou, Yi
    Zhou, Wei-Qi
    Wang, Shi-Xin
    Zhang, Pei
    Shuikexue Jinzhan/Advances in Water Science, 2004, 15 (03):
  • [27] The monitoring of water quality using remote sensing at Taihu Lake
    Xiao, Q
    Wen, J
    Lin, Q
    Zhou, Y
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 1605 - 1607
  • [28] A Remote Sensing Framework for Automated Monitoring of Roadside Water Quality
    Flores, Alexander
    Barja, Anais
    Shi, Xianming
    Zhao, Xinghui
    Proceedings - 22nd IEEE International Conference on Machine Learning and Applications, ICMLA 2023, 2023, : 1765 - 1770
  • [30] Monitoring water quality using proximal remote sensing technology
    Sun, Xiao
    Zhang, Yunlin
    Shi, Kun
    Zhang, Yibo
    Li, Na
    Wang, Weijia
    Huang, Xin
    Qin, Boqiang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 803