Optimization of E.Coli heat shock response parameter tuning using distributed and integrated genetic algorithms

被引:0
|
作者
Tanaka, S [1 ]
Kurata, H [1 ]
Ohashi, T [1 ]
机构
[1] Kyushu Inst Technol, Program Creat Informat, Iizuka, Fukuoka, Japan
关键词
genetic algorithms; distributed GA; gene regulatory network; heat shock response;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The progress of computer made the analysis that was difficult in traditional technology possible. In Gene Regulatory Network Simulation to recreate and understand actual biological reaction, we build a reaction model and find the several unknown parameters in order to show the same behavior as actual. However it is difficult to optimize them because the scopes of them are logarithm scale wide and the fitness space is multidimensional and multimodal. We optimized it using Distributed Genetic Algorithms (DGA) which has multiple populations. DGA showed better performance, if and only if the parameter of the emigrating operation is appropriate. Therefore we propose Distributed and Integrated Genetic Algorithms (DIGA) to reduce the cost to find the appropriate parameters of operation. We carried out some optimizing experiments on parameter tuning of Heat Shock Response simulation of E. Coli and several mathematical functions and inspected the characteristic of DIGA.
引用
收藏
页码:1243 / 1248
页数:6
相关论文
共 50 条
  • [41] Parameter Tuning Associated with Nonlinear Dynamics Techniques for the Detection of Cardiac Murmurs by Using Genetic Algorithms
    Delgado, E.
    Jaramillo, J.
    Quiceno, A. F.
    Castellanos, G.
    COMPUTERS IN CARDIOLOGY 2007, VOL 34, 2007, 34 : 403 - 406
  • [42] Conformational Adaptation in the E. coli Sigma 32 Protein in Response to Heat Shock
    Chakraborty, Abhijit
    Mukherjee, Srijata
    Chattopadhyay, Ruchira
    Roy, Siddhartha
    Chakrabarti, Saikat
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (18): : 4793 - 4802
  • [43] Development of a biochemistry capstone course in proteomics:: Heat shock response in E-coli
    Eberhardt, ES
    FASEB JOURNAL, 2002, 16 (05): : A931 - A932
  • [44] Waveform-based microseismic location using stochastic optimization algorithms: A parameter tuning workflow
    Li, Lei
    Tan, Jingqiang
    Xie, Yujiang
    Tan, Yuyang
    Walda, Jan
    Zhao, Zhengguang
    Gajewski, Dirk
    COMPUTERS & GEOSCIENCES, 2019, 124 : 115 - 127
  • [45] Heterogenous vehicle routing: comparing parameter tuning using genetic algorithm and bayesian optimization
    Ramasamy, Subramanian
    Mondal, Md Safwan
    Reddinger, Jean-Paul F.
    Dotterweich, James M.
    Humann, James D.
    Childers, Marshal A.
    Bhounsule, Pranav A.
    2022 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2022, : 104 - 113
  • [46] Optimization of energy supply systems in horticulture using genetic algorithms - an integrated approach
    Husmann, HJ
    Tantau, HJ
    CONTROL APPLICATIONS & ERGONOMICS IN AGRICULTURE, 1999, : 119 - 125
  • [47] Monitoring of the heat-shock response in Escherichia coli using an optical biosensor
    Vostiar, I
    Tkac, J
    Mandenius, CF
    ANALYTICAL BIOCHEMISTRY, 2003, 322 (02) : 156 - 163
  • [48] Parameters Optimization for GECDS Using Response Surface Methodology and Genetic Algorithms
    Qi, Hongli
    Li, Tao
    Lin, Jing
    PROCEEDINGS OF 2015 IEEE 5TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION, 2015, : 198 - 202
  • [49] Optimization of Flux Cored Arc Welding Process Parameter Using Genetic and Memetic Algorithms
    Kannan, T.
    Murugan, N.
    Sreeharan, B. N.
    JOURNAL FOR MANUFACTURING SCIENCE AND PRODUCTION, 2013, 13 (04) : 239 - 250
  • [50] Optimization of Cylindrical Pin-Fin Heat Sinks Using Genetic Algorithms
    Mohsin, Sajjad
    Maqbool, Ayesha
    Khan, Waqar A.
    IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2009, 32 (01): : 44 - 52