Optimization of E.Coli heat shock response parameter tuning using distributed and integrated genetic algorithms

被引:0
|
作者
Tanaka, S [1 ]
Kurata, H [1 ]
Ohashi, T [1 ]
机构
[1] Kyushu Inst Technol, Program Creat Informat, Iizuka, Fukuoka, Japan
关键词
genetic algorithms; distributed GA; gene regulatory network; heat shock response;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The progress of computer made the analysis that was difficult in traditional technology possible. In Gene Regulatory Network Simulation to recreate and understand actual biological reaction, we build a reaction model and find the several unknown parameters in order to show the same behavior as actual. However it is difficult to optimize them because the scopes of them are logarithm scale wide and the fitness space is multidimensional and multimodal. We optimized it using Distributed Genetic Algorithms (DGA) which has multiple populations. DGA showed better performance, if and only if the parameter of the emigrating operation is appropriate. Therefore we propose Distributed and Integrated Genetic Algorithms (DIGA) to reduce the cost to find the appropriate parameters of operation. We carried out some optimizing experiments on parameter tuning of Heat Shock Response simulation of E. Coli and several mathematical functions and inspected the characteristic of DIGA.
引用
收藏
页码:1243 / 1248
页数:6
相关论文
共 50 条
  • [31] Integrated multiobective optimization and a priori preferences using genetic algorithms
    Sanchis, Javier
    Martinez, Miguel A.
    Blasco, Xavier
    INFORMATION SCIENCES, 2008, 178 (04) : 931 - 951
  • [32] Design Optimization of IPMSM for 42 V Integrated Starter Alternator Using Lumped Parameter Model and Genetic Algorithms
    Mirahki, Hooshang
    Moallem, Mehdi
    Rahimi, Sayyed Abbas
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (03) : 114 - 119
  • [33] Parameter optimization in decision tree learning by using simple genetic algorithms
    Camilleri, Michel
    Neri, Filippo
    WSEAS Transactions on Computers, 2014, 13 : 582 - 591
  • [34] Parameter optimization for growth model of greenhouse crop using genetic algorithms
    Dai, Chunni
    Yao, Meng
    Xie, Zhujie
    Chen, Chunhong
    Liu, Jingao
    APPLIED SOFT COMPUTING, 2009, 9 (01) : 13 - 19
  • [35] Parameter Extraction of Battery Models Using Multiobjective Optimization Genetic Algorithms
    Kumar, Praveen
    Bauer, Pavol
    PROCEEDINGS OF 14TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (EPE-PEMC 2010), 2010,
  • [36] Distributed Island-Model Genetic Algorithms Using Heterogeneous Parameter Settings
    Gong, Yiyuan
    Fukunaga, Alex
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 820 - 827
  • [37] Integrated optimization of energy supply systems in horticulture using genetic algorithms
    Husmann, HJ
    Tantau, HJ
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2001, 31 (01) : 47 - 59
  • [38] INDENTATION TESTING PARAMETER IDENTIFICATION USING AN OPTIMIZATION PROCEDURE BASED ON GENETIC ALGORITHMS
    Rauchs, Gast
    Dumitriu, Dan
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2009, 10 (02): : 165 - 172
  • [39] Using Genetic Algorithms for Parameter Optimization in Building Predictive Data Mining Models
    Surcka, Ashish
    Indukuri, Kishore Varma
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2008, 5139 : 260 - 271
  • [40] Parameter optimization for B-spline curve fitting using genetic algorithms
    Kumar, GS
    Kalra, PK
    Dhande, SG
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 1871 - 1878