Optimization of E.Coli heat shock response parameter tuning using distributed and integrated genetic algorithms

被引:0
|
作者
Tanaka, S [1 ]
Kurata, H [1 ]
Ohashi, T [1 ]
机构
[1] Kyushu Inst Technol, Program Creat Informat, Iizuka, Fukuoka, Japan
关键词
genetic algorithms; distributed GA; gene regulatory network; heat shock response;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The progress of computer made the analysis that was difficult in traditional technology possible. In Gene Regulatory Network Simulation to recreate and understand actual biological reaction, we build a reaction model and find the several unknown parameters in order to show the same behavior as actual. However it is difficult to optimize them because the scopes of them are logarithm scale wide and the fitness space is multidimensional and multimodal. We optimized it using Distributed Genetic Algorithms (DGA) which has multiple populations. DGA showed better performance, if and only if the parameter of the emigrating operation is appropriate. Therefore we propose Distributed and Integrated Genetic Algorithms (DIGA) to reduce the cost to find the appropriate parameters of operation. We carried out some optimizing experiments on parameter tuning of Heat Shock Response simulation of E. Coli and several mathematical functions and inspected the characteristic of DIGA.
引用
收藏
页码:1243 / 1248
页数:6
相关论文
共 50 条
  • [1] Distributed Parameter Tuning for Genetic Algorithms
    Barrero, David F.
    Gonzalez-Pardo, Antonio
    Camacho, David
    R-Moreno, Maria D.
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2010, 7 (03) : 661 - 677
  • [2] Survival ratio GA for two-evaluation problem in parameter tuning of heat shock response in E. coli
    Tanaka, S
    Kurata, H
    Ohashi, T
    INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 2078 - 2083
  • [3] Parameter optimization of heat recovery steam generators by using genetic algorithms
    Zhou, Quan
    Zhu, Xiao-Liang
    Dongli Gongcheng/Power Engineering, 2005, 25 (04): : 513 - 516
  • [4] OPTIMIZATION USING DISTRIBUTED GENETIC ALGORITHMS
    STARKWEATHER, T
    WHITLEY, D
    MATHIAS, K
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 496 : 176 - 185
  • [5] Parameter tuning for buck converters using genetic algorithms
    Choi, Young-Kiu
    Jung, Byung-Wook
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2007, 4682 : 641 - 647
  • [6] Retrieval parameter optimization using genetic algorithms
    Fujita, Sumio
    INFORMATION PROCESSING & MANAGEMENT, 2009, 45 (06) : 664 - 682
  • [7] An efficient tuning framework for Kalman filter parameter optimization using design of experiments and genetic algorithms
    Zhang, Alan
    Atia, Mohamed Maher
    NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION, 2020, 67 (04): : 775 - 793
  • [8] An Efficient Tuning Framework for Kalman Filter Parameter Optimization using Design of Experiments and Genetic Algorithms
    Zhang, Alan
    Atia, Mohamed Maher
    PROCEEDINGS OF THE 32ND INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2019), 2019, : 1641 - 1652
  • [9] Parameter Tuning of MLP Neural Network Using Genetic Algorithms
    Er, Meng Joo
    Liu, Fan
    SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009), 2009, 56 : 121 - 130
  • [10] Analysis of E.coli Promoter Regions Using Classification, Association and Clustering Algorithms
    Kaladhar, D. S. V. G. K.
    Devi, T. Uma
    Lakshmi, P. V.
    Reddy, R. Harikrishna
    Ayayangar, R. K. SriTeja
    Rao, P. V. Nageswara
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS 2012 (INDIA 2012), 2012, 132 : 169 - +