Adaptive Regularization of Some Inverse Problems in Image Analysis

被引:3
|
作者
Hong, Byung-Woo [1 ]
Koo, Ja-Keoung [2 ]
Burger, Martin [3 ]
Soatto, Stefano [4 ]
机构
[1] Chung Ang Univ, Comp Sci Dept, Seoul 06974, South Korea
[2] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[3] Friedrich Alexander Univ Erlangen Nuremberg, Dept Math, D-91054 Erlangen, Germany
[4] Univ Calif Los Angeles, Comp Sci Dept, Los Angeles, CA 90095 USA
基金
新加坡国家研究基金会;
关键词
Adaptive regularization; Huber-Huber model; convex optimization; ADMM; segmentation; optical flow; denoising; ILL-POSED PROBLEMS; SMOOTHING PARAMETER; L-CURVE; SEGMENTATION; RESTORATION; SELECTION; SPACE;
D O I
10.1109/TIP.2019.2960587
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an adaptive regularization scheme for optimizing composite energy functionals arising in image analysis problems. The scheme automatically trades off data fidelity and regularization depending on the current data fit during the iterative optimization, so that regularization is strongest initially, and wanes as data fidelity improves, with the weight of the regularizer being minimized at convergence. We also introduce a Huber loss function in both data fidelity and regularization terms, and present an efficient convex optimization algorithm based on the alternating direction method of multipliers (ADMM) using the equivalent relation between the Huber function and the proximal operator of the one-norm. We illustrate and validate our adaptive Huber-Huber model on synthetic and real images in segmentation, motion estimation, and denoising problems.
引用
收藏
页码:2507 / 2521
页数:15
相关论文
共 50 条
  • [21] RELAXED REGULARIZATION FOR LINEAR INVERSE PROBLEMS
    Luiken, Nick
    Van Leeuwen, Tristan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : S269 - S292
  • [22] Semantic regularization of electromagnetic inverse problems
    Zhang, Hongrui
    Chen, Yanjin
    Wang, Zhuo
    Cui, Tie Jun
    del Hougne, Philipp
    Li, Lianlin
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [23] Iterative regularization for elliptic inverse problems
    Khan, A. A.
    Rouhani, B. D.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (06) : 850 - 860
  • [24] Modern regularization methods for inverse problems
    Benning, Martin
    Burger, Martin
    ACTA NUMERICA, 2018, 27 : 1 - 111
  • [25] Augmented NETT regularization of inverse problems
    Obmann, Daniel
    Linh Nguyen
    Schwab, Johannes
    Haltmeier, Markus
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (10):
  • [26] WINDOWED SPECTRAL REGULARIZATION OF INVERSE PROBLEMS
    Chung, Julianne
    Easley, Glenn
    O'Leary, Dianne P.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (06): : 3175 - 3200
  • [27] REGULARIZATION METHODS FOR LINEAR INVERSE PROBLEMS
    BERTERO, M
    LECTURE NOTES IN MATHEMATICS, 1986, 1225 : 52 - 112
  • [28] Sparsity regularization in inverse problems Preface
    Jin, Bangti
    Maass, Peter
    Scherzer, Otmar
    INVERSE PROBLEMS, 2017, 33 (06)
  • [29] Method of descriptive regularization for the inverse problems
    Morozov, V.A.
    Gol'dman, N.L.
    Malyshev, V.A.
    Inzhenerno-Fizicheskii Zhurnal, 1993, 65 (06): : 695 - 702
  • [30] Image reconstruction and subsurface detection by the application of Tikhonov regularization to inverse problems in hyperspectral images
    Jiménez-Rodríguez, LO
    Rodríguez-Díaz, E
    Vélez-Reyes, M
    DiMarzi, CA
    OCEAN REMOTE SENSING AND APPLICATIONS, 2003, 4892 : 398 - 407