2H → 1T phase transformation in Janus monolayer MoSSe and MoSTe: an efficient hole injection contact for 2H-MoS2

被引:46
|
作者
Wang, Zhiguo [1 ]
机构
[1] Univ Elect Sci & Technol China, Ctr Publ Secur Technol, Sch Elect Sci & Engn, Chengdu 610054, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSITION-METAL DICHALCOGENIDES; LAYER MOS2; HYDROTHERMAL SYNTHESIS; MECHANICAL-PROPERTIES; BLACK PHOSPHORUS; NANOSHEETS; ENERGY; DIFFUSION; LITHIUM;
D O I
10.1039/c8tc04951c
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted much scientific attention for applications in nanoelectronic and optoelectronic devices. The physical and chemical properties of 2D TMDs depend on their phase structures. In this study, electron doping-induced 2H 1T structural transformation of MoS2, Janus MoSSe and MoSTe monolayers was studied by using density functional theory. Phonon dispersion calculation showed that both 2H- and 1T-MoSX (X-S, Se and Te) monolayers were dynamically stable. Janus monolayer 2H-MoSX exhibited band gap of 1.0-1.68 eV, whereas Janus monolayer 1T-MoSX was found to be a semiconductor with narrow band gap of 0.13-0.26 eV. The critical values of electron concentration to trigger 2H 1T structural phase transformation decreased as X atom changed from S to Te in MoSX (X-S, Se and Te) monolayer. The in-plane stiffness decreased with increasing electron concentration for 2H-phase, whereas that of the 1T-phase changed slightly with electron concentration; thus, electron doping destabilized the crystal structure of 2H-phase. The 1T-phase could provide an efficient hole injection contact to 2H-MoS2 for use in nano-electronic devices.
引用
收藏
页码:13000 / 13005
页数:6
相关论文
共 50 条
  • [31] Tailoring the fusion effect of phase-engineered 1T/2H-MoS2 towards photocatalytic hydrogen evolution
    Das, Sarmistha
    Swain, Gayatri
    Mishra, Bhagyashree Priyadarshini
    Parida, Kulamani
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (31) : 14922 - 14932
  • [32] The ultrafine monolayer 1 T/2H-MoS2: Preparation, characterization and amazing photocatalytic characteristics
    Zhang, Zhanfei
    Dong, Yan
    Liu, Guangyi
    Li, Jiangwei
    Sun, Hui
    Luo, Hao
    Liu, Sheng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 589
  • [33] Hybridized 1T/2H MoS2 Having Controlled 1T Concentrations and its use in Supercapacitors
    Nguyen Thi Xuyen
    Ting, Jyh-Ming
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (68) : 17348 - 17355
  • [34] Preparation of a Hybrid TiO2 and 1T/2H-MoS2 Photocatalyst for the Degradation of Tetracycline Hydrochloride
    Chen, Miaogen
    Chang, Wenya
    Zhang, Jing
    Zhao, Wan
    Chen, Zhi
    ACS OMEGA, 2023, 8 (17): : 15458 - 15466
  • [35] A thermal conductivity switch via the reversible 2H–1T′phase transition in monolayer MoTe2
    张定波
    任卫君
    王珂
    陈帅
    张力发
    倪宇翔
    张刚
    Chinese Physics B, 2023, (05) : 12 - 17
  • [36] Dynamics of chemical vapor sensing with MoS2 using 1T/2H phase contacts/channel
    Friedman, Adam L.
    Perkins, F. Keith
    Hanbicki, Aubrey T.
    Culbertson, James C.
    Campbell, Paul M.
    NANOSCALE, 2016, 8 (22) : 11445 - 11453
  • [37] MoS2/rGO electrocatalyst with MoO3 and 1T/2H-MoS2 species as active sites for efficient hydrogen evolution reaction
    Zhang, Zihan
    Wei, Liguo
    Zhao, Lishuang
    Zhang, Yu
    Bai, Haihong
    MATERIALS LETTERS, 2025, 391
  • [38] Large Bulk Piezophotovoltaic Effect of Monolayer 2H-MoS2
    Schankler, Aaron M.
    Gao, Lingyuan
    Rappe, Andrew M.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (04): : 1244 - 1249
  • [39] Piezo-photovoltaic Effect in Monolayer 2H-MoS2
    Wang, Wei
    Xiao, Yu
    Li, Teng
    Lu, Xiangchao
    Xu, Na
    Cao, Yang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (13): : 3549 - 3553
  • [40] Phase engineering enables ultrahigh-capacity 1T/2H-MoS2 for advanced ammonium-ion storage
    Qi, Xinyu
    Zhu, Yirong
    Xu, Yuting
    Chen, Wenhao
    Hu, Zhongliang
    Xi, Liujiang
    Xie, Yujia
    Hou, Hongshuai
    Zou, Guoqiang
    Ji, Xiaobo
    ENERGY STORAGE MATERIALS, 2025, 75