Piezo-photovoltaic Effect in Monolayer 2H-MoS2

被引:3
|
作者
Wang, Wei [1 ]
Xiao, Yu [1 ]
Li, Teng [1 ]
Lu, Xiangchao [1 ]
Xu, Na [1 ]
Cao, Yang [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, Collaborat Innovat Ctr Chem Energy Mat iChEM, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Xiamen 361005, Peoples R China
[3] Innovat Lab Sci & Technol Energy Mat Fujian Prov I, Xiamen 361005, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 13期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
PIEZOELECTRICITY; ABSORPTION;
D O I
10.1021/acs.jpclett.4c00470
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Noncentrosymmetric bulk materials effectively convert light energy into electricity by making use of the bulk photovoltaic effect (BPVE). However, whether such an effect persists when reducing the thickness of materials down to atomic-scale remains to be revealed. Here, we show the piezo-photovoltaic effect in atomically thin two-dimensional materials, where the strain-induced polarization can generate photovoltaic outputs in the noncentrosymmetric mono- and few-layer 2H-MoS2 crystals. The photocurrent is enhanced by orders of magnitude when the MoS2 crystals experience an in-plane strain of about 0.2%, with photopower-dependent responsivity up to 0.1 A/W that rivals other state-of-the-art BPVE materials. In addition, studies on the spatial distributions of photocurrents on MoS2 with a controlled number of layers also allow us to disentangle various factors that couple the piezoelectricity and photovoltaics. Therefore, our results also provide insights into the mechanisms of the piezo-photovoltaic effect in two-dimensional materials with thicknesses at the atomic-scale limit.
引用
收藏
页码:3549 / 3553
页数:5
相关论文
共 50 条
  • [1] Large Bulk Piezophotovoltaic Effect of Monolayer 2H-MoS2
    Schankler, Aaron M.
    Gao, Lingyuan
    Rappe, Andrew M.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (04): : 1244 - 1249
  • [2] Bulk piezo-photovoltaic effect in LiNbO3
    Pilyak, F.S.
    Kulikov, A.G.
    Fridkin, V.M.
    Pisarevsky, Yu.V.
    Marchenkov, N.V.
    Blagov, A.E.
    Kovalchuk, M.V.
    Physica B: Condensed Matter, 2021, 604
  • [3] Large-Scale Atomically Thin Monolayer 2H-MoS2 Field-Effect Transistors
    Shinde, Nitin Babu
    Ryu, Beo Deul
    Meganathan, Kalaiarasan
    Francis, Bellarmine
    Hong, Chang-Hee
    Chandramohan, S.
    Eswaran, Senthil Kumar
    ACS APPLIED NANO MATERIALS, 2020, 3 (08): : 7371 - 7376
  • [4] Bulk piezo-photovoltaic effect in LiNbO3
    Pilyak, F. S.
    Kulikov, A. G.
    Fridkin, V. M.
    Pisarevsky, Yu, V
    Marchenkov, N., V
    Blagov, A. E.
    Kovalchuk, M., V
    PHYSICA B-CONDENSED MATTER, 2021, 604
  • [5] INTERLAYER POTENTIAL IN 2H-MOS2
    GHOSH, PN
    MAITI, CR
    PHYSICAL REVIEW B, 1984, 29 (08): : 4757 - 4761
  • [6] Design and performance analysis of ZnO nanorods/MoS2/p-Si piezo-photovoltaic energy harvester
    Parasuraman, R.
    Rathnakannan, K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 933
  • [7] Structural, electronic and adsorption properties of monolayer 2H-MoS2 on graphene substrates: A computational study
    Hartmann, Gregory
    Lee, Myungsuk
    Hwang, Gyeong S.
    INORGANIC CHEMISTRY COMMUNICATIONS, 2019, 106 : 135 - 138
  • [8] The distribution effect of sulfur vacancy in 2H-MoS2 monolayer on its H2 generation mechanism from density functional theory
    Kong, Chao
    Han, Yan-Xia
    Hou, Li-jie
    Yan, Pen-Ji
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (01) : 242 - 249
  • [9] The ultrafine monolayer 1 T/2H-MoS2: Preparation, characterization and amazing photocatalytic characteristics
    Zhang, Zhanfei
    Dong, Yan
    Liu, Guangyi
    Li, Jiangwei
    Sun, Hui
    Luo, Hao
    Liu, Sheng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 589
  • [10] Strain-induced magnetic coupling oscillations in Mn doped monolayer 2H-MoS2
    Pan, Feng-chun
    Lan, Wenjing
    Li, Haixin
    Lin, Xue-ling
    PHYSICA B-CONDENSED MATTER, 2025, 699