SquiggleNet: real-time, direct classification of nanopore signals

被引:31
|
作者
Bao, Yuwei [1 ]
Wadden, Jack [1 ,2 ]
Erb-Downward, John R. [3 ]
Ranjan, Piyush [3 ]
Zhou, Weichen [4 ]
McDonald, Torrin L. [5 ]
Mills, Ryan E. [4 ,5 ]
Boyle, Alan P. [4 ,5 ]
Dickson, Robert P. [3 ,6 ,7 ]
Blaauw, David [3 ]
Welch, Joshua D. [1 ,4 ]
机构
[1] Univ Michigan, Dept Comp Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Internal Med, Div Pulm & Crit Care Med, Med Sch, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[5] Univ Michigan Med, Dept Human Genet, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Microbiol & Immunol, Med Sch, Ann Arbor, MI 48109 USA
[7] Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
关键词
Deep learning; Read-until; Oxford Nanopore; Raw signal; Real-time; IDENTIFICATION; METHYLATION;
D O I
10.1186/s13059-021-02511-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We present SquiggleNet, the first deep-learning model that can classify nanopore reads directly from their electrical signals. SquiggleNet operates faster than DNA passes through the pore, allowing real-time classification and read ejection. Using 1 s of sequencing data, the classifier achieves significantly higher accuracy than base calling followed by sequence alignment. Our approach is also faster and requires an order of magnitude less memory than alignment-based approaches. SquiggleNet distinguished human from bacterial DNA with over 90% accuracy, generalized to unseen bacterial species in a human respiratory meta genome sample, and accurately classified sequences containing human long interspersed repeat elements.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Real-Time Visual Concept Classification
    Uijlings, Jasper R. R.
    Smeulders, Arnold W. M.
    Scha, Remko J. H.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2010, 12 (07) : 665 - 681
  • [42] Real-time transient classification pipeline
    Starr, Dan L.
    Bloom, J. S.
    Butler, N. R.
    GAMMA-RAY BURSTS 2007, 2008, 1000 : 635 - 638
  • [43] Real-time Automatic Modulation Classification
    Tridgell, Stephen
    Boland, David
    Leong, Philip H. W.
    Siddhartha
    2019 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (ICFPT 2019), 2019, : 299 - 302
  • [44] Real-time Emotion Classification of Tweets
    Janssens, Olivier
    Slembrouck, Maarten
    Verstockt, Steven
    Van Hoecke, Sofie
    Van de Walle, Rik
    2013 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2013, : 1430 - 1431
  • [45] Real-time Classification of Aircrafts Manoeuvers
    Sami, Jouaber
    Silvere, Bonnabel
    Santiago, Velasco-Forero
    Marion, Pilte
    Jesus, Angulo
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2023, 95 (04): : 425 - 434
  • [46] Real-Time Optimization: Classification and assessment
    Mochizuki, S.
    Saputelli, L. A.
    Kabir, C. S.
    Cramer, R.
    Lochmann, M. J.
    Reese, R. D.
    Harms, L. K.
    Sisk, C. D.
    Hite, J. R.
    Escorcia, A.
    SPE PRODUCTION & OPERATIONS, 2006, 21 (04): : 455 - 466
  • [47] Real-Time Classification of Twitter Trends
    Zubiaga, Arkaitz
    Spina, Damiano
    Martinez, Raquel
    Fresno, Victor
    JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 2015, 66 (03) : 462 - 473
  • [48] Real-time classification of traffic signs
    Douville, P
    REAL-TIME IMAGING, 2000, 6 (03) : 185 - 193
  • [49] Real-Time Gender Classification by Face
    Al Mashagba, Eman Fares
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (03) : 332 - 336
  • [50] Real-time Classification of Aircrafts Manoeuvers
    Jouaber Sami
    Bonnabel Silvère
    Velasco-Forero Santiago
    Pilté Marion
    Angulo Jesus
    Journal of Signal Processing Systems, 2023, 95 : 425 - 434