SquiggleNet: real-time, direct classification of nanopore signals

被引:31
|
作者
Bao, Yuwei [1 ]
Wadden, Jack [1 ,2 ]
Erb-Downward, John R. [3 ]
Ranjan, Piyush [3 ]
Zhou, Weichen [4 ]
McDonald, Torrin L. [5 ]
Mills, Ryan E. [4 ,5 ]
Boyle, Alan P. [4 ,5 ]
Dickson, Robert P. [3 ,6 ,7 ]
Blaauw, David [3 ]
Welch, Joshua D. [1 ,4 ]
机构
[1] Univ Michigan, Dept Comp Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Internal Med, Div Pulm & Crit Care Med, Med Sch, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[5] Univ Michigan Med, Dept Human Genet, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Microbiol & Immunol, Med Sch, Ann Arbor, MI 48109 USA
[7] Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
关键词
Deep learning; Read-until; Oxford Nanopore; Raw signal; Real-time; IDENTIFICATION; METHYLATION;
D O I
10.1186/s13059-021-02511-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We present SquiggleNet, the first deep-learning model that can classify nanopore reads directly from their electrical signals. SquiggleNet operates faster than DNA passes through the pore, allowing real-time classification and read ejection. Using 1 s of sequencing data, the classifier achieves significantly higher accuracy than base calling followed by sequence alignment. Our approach is also faster and requires an order of magnitude less memory than alignment-based approaches. SquiggleNet distinguished human from bacterial DNA with over 90% accuracy, generalized to unseen bacterial species in a human respiratory meta genome sample, and accurately classified sequences containing human long interspersed repeat elements.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Real-time Event Recognition and Analysis System for Nanopore Study
    Wang Hui-Feng
    Huang Fei
    Gu Zhen
    Hu Zheng-Li
    Ying Yi-Lun
    Yan Bing-Yong
    Long Yi-Tao
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2018, 46 (06) : 843 - 850
  • [32] A High-Speed Real-Time Nanopore Signal Detector
    Huang, Yiyun
    Magierowski, Sebastian
    Ghafar-Zadeh, Ebrahim
    Wang, Chengjie
    2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2015, : 346 - 353
  • [33] Evaluation of real-time nanopore sequencing for Salmonella serotype prediction
    Xu, Feng
    Ge, Chongtao
    Luo, Hao
    Li, Shaoting
    Wiedmann, Martin
    Deng, Xiangyu
    Zhang, Guangtao
    Stevenson, Abigail
    Baker, Robert C.
    Tang, Silin
    FOOD MICROBIOLOGY, 2020, 89
  • [34] Real-Time Stochastic Detection of Multiple Neurotransmitters with a Protein Nanopore
    Boersma, Arnold J.
    Brain, Keith L.
    Bayley, Hagan
    ACS NANO, 2012, 6 (06) : 5304 - 5308
  • [35] Scaffolding and completing genome assemblies in real-time with nanopore sequencing
    Minh Duc Cao
    Son Hoang Nguyen
    Ganesamoorthy, Devika
    Elliott, Alysha G.
    Cooper, Matthew A.
    Coin, Lachlan J. M.
    NATURE COMMUNICATIONS, 2017, 8
  • [36] Icarust, a real-time simulator for Oxford Nanopore adaptive sampling
    Munro, Rory
    Wibowo, Satrio
    Payne, Alexander
    Loose, Matthew
    BIOINFORMATICS, 2024, 40 (04)
  • [37] Real-Time Monitoring of Peptide Cleavage Using a Nanopore Probe
    Zhao, Qitao
    de Zoysa, Ranulu Samanthi S.
    Wang, Deqiang
    Jayawardhana, Dilani A.
    Guan, Xiyun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (18) : 6324 - +
  • [38] BoardION: real-time monitoring of Oxford Nanopore sequencing instruments
    Aimeric Bruno
    Jean-Marc Aury
    Stefan Engelen
    BMC Bioinformatics, 22
  • [39] BoardION: real-time monitoring of Oxford Nanopore sequencing instruments
    Bruno, Aimeric
    Aury, Jean-Marc
    Engelen, Stefan
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [40] Real-time classification of ECGs on a PDA
    Rodríguez, J
    Goñi, A
    Illarramendi, A
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2005, 9 (01): : 23 - 34