SquiggleNet: real-time, direct classification of nanopore signals

被引:31
|
作者
Bao, Yuwei [1 ]
Wadden, Jack [1 ,2 ]
Erb-Downward, John R. [3 ]
Ranjan, Piyush [3 ]
Zhou, Weichen [4 ]
McDonald, Torrin L. [5 ]
Mills, Ryan E. [4 ,5 ]
Boyle, Alan P. [4 ,5 ]
Dickson, Robert P. [3 ,6 ,7 ]
Blaauw, David [3 ]
Welch, Joshua D. [1 ,4 ]
机构
[1] Univ Michigan, Dept Comp Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Internal Med, Div Pulm & Crit Care Med, Med Sch, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[5] Univ Michigan Med, Dept Human Genet, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Microbiol & Immunol, Med Sch, Ann Arbor, MI 48109 USA
[7] Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
关键词
Deep learning; Read-until; Oxford Nanopore; Raw signal; Real-time; IDENTIFICATION; METHYLATION;
D O I
10.1186/s13059-021-02511-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We present SquiggleNet, the first deep-learning model that can classify nanopore reads directly from their electrical signals. SquiggleNet operates faster than DNA passes through the pore, allowing real-time classification and read ejection. Using 1 s of sequencing data, the classifier achieves significantly higher accuracy than base calling followed by sequence alignment. Our approach is also faster and requires an order of magnitude less memory than alignment-based approaches. SquiggleNet distinguished human from bacterial DNA with over 90% accuracy, generalized to unseen bacterial species in a human respiratory meta genome sample, and accurately classified sequences containing human long interspersed repeat elements.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] SquiggleNet: real-time, direct classification of nanopore signals
    Yuwei Bao
    Jack Wadden
    John R. Erb-Downward
    Piyush Ranjan
    Weichen Zhou
    Torrin L. McDonald
    Ryan E. Mills
    Alan P. Boyle
    Robert P. Dickson
    David Blaauw
    Joshua D. Welch
    Genome Biology, 22
  • [2] Real-time mapping of nanopore raw signals
    Zhang, Haowen
    Li, Haoran
    Jain, Chirag
    Cheng, Haoyu
    Au, Kin Fai
    Li, Heng
    Aluru, Srinivas
    BIOINFORMATICS, 2021, 37 : I477 - I483
  • [3] Real-Time Unsupervised Classification of Environmental Noise Signals
    Saki, Fatemeh
    Kehtarnavaz, Nasser
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2017, 25 (08) : 1657 - 1667
  • [4] REAL-TIME DETECTION AND CLASSIFICATION OF TRAFFIC LIGHT SIGNALS
    Said, Asaad F.
    Hazrati, Mehrnaz Kh
    Akhbari, Farshad
    2016 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2016,
  • [5] Dynamic Bayesian networks for real-time classification of seismic signals
    Riggelsen, Carsten
    Ohrnberger, Matthias
    Scherbaum, Frank
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2007, PROCEEDINGS, 2007, 4702 : 565 - +
  • [6] Real-Time Classification of Real-Time Communications
    Perna, Gianluca
    Markudova, Dena
    Trevisan, Martino
    Garza, Paolo
    Meo, Michela
    Munafo, Maurizio Matteo
    Carofiglio, Giovanna
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4676 - 4690
  • [7] Real-time visualization of perforin nanopore assembly
    Leung C.
    Hodel A.W.
    Brennan A.J.
    Lukoyanova N.
    Tran S.
    House C.M.
    Kondos S.C.
    Whisstock J.C.
    Dunstone M.A.
    Trapani J.A.
    Voskoboinik I.
    Saibil H.R.
    Hoogenboom B.W.
    Nature Nanotechnology, 2017, 12 (5) : 467 - 473
  • [8] Real-time visualization of perforin nanopore assembly
    Leung, Carl
    Hodel, Adrian W.
    Brennan, Amelia J.
    Lukoyanova, Natalya
    Tran, Sharon
    House, Colin M.
    Kondos, Stephanie C.
    Whisstock, James C.
    Dunstone, Michelle A.
    Trapani, Joseph A.
    Voskoboinik, Ilia
    Saibil, Helen R.
    Hoogenboom, Bart W.
    NATURE NANOTECHNOLOGY, 2017, 12 (05) : 467 - 473
  • [9] RawHash: enabling fast and accurate real-time analysis of raw nanopore signals for large genomes
    Firtina, Can
    Ghiasi, Nika Mansouri
    Lindegger, Joel
    Singh, Gagandeep
    Cavlak, Meryem Banu
    Mao, Haiyu
    Mutlu, Onur
    BIOINFORMATICS, 2023, 39 : i297 - i307
  • [10] RawHash: enabling fast and accurate real-time analysis of raw nanopore signals for large genomes
    Firtina, Can
    Ghiasi, Nika Mansouri
    Lindegger, Joel
    Singh, Gagandeep
    Cavlak, Meryem Banu
    Mao, Haiyu
    Mutlu, Onur
    BIOINFORMATICS, 2023, 39 : I297 - I307