Stoichiometric control of the density of states in PbS colloidal quantum dot solids

被引:70
|
作者
Balazs, Daniel M. [1 ]
Bijlsma, Klaas I. [1 ]
Fang, Hong-Hua [1 ]
Dirin, Dmitry N. [2 ,3 ]
Dobeli, Max [4 ]
Kovalenko, Maksym V. [2 ,3 ]
Loi, Maria A. [1 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Vladimir Prelog Weg 1, CH-8093 Zurich, Switzerland
[3] Empa, Swiss Fed Labs Mat Sci & Technol, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[4] Swiss Fed Inst Technol, Lab Ion Beam Phys, Otto Stern Weg 5, CH-8093 Zurich, Switzerland
来源
SCIENCE ADVANCES | 2017年 / 3卷 / 09期
基金
欧洲研究理事会;
关键词
FIELD-EFFECT TRANSISTORS; POST-SYNTHESIS; SOLAR-CELLS; TEMPERATURE; MOBILITY; NANOCRYSTALS; TRANSPORT; DEVICES;
D O I
10.1126/sciadv.aao1558
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Colloidal quantum dots, and nanostructured semiconductors in general, carry the promise of overcoming the limitations of classical materials in chemical and physical properties and in processability. However, sufficient control of electronic properties, such as carrier concentration and carrier mobility, has not been achieved until now, limiting their application. In bulk semiconductors, modifications of electronic properties are obtained by alloying or doping, an approach that is not viable for structures in which the surface is dominant. The electronic properties of PbS colloidal quantum dot films are fine-tuned by adjusting their stoichiometry, using the large surface area of the nanoscale building blocks. We achieve an improvement ofmore than two orders ofmagnitude in the holemobility, from below 10(-3) to above 0.1 cm(2)/N.s, by substituting the iodide ligands with sulfide while keeping the electron mobility stable (similar to 1 cm(2)/V.s). This approach is not possible in bulk semiconductors, and the developed method will likely contribute to the improvement of solar cell efficiencies through better carrier extraction and to the realization of complex (opto) electronic devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Colloidal quantum dot solids: Models and designs
    Voznyy, Oleksandr
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [22] Micron Thick Colloidal Quantum Dot Solids
    Fan, James Z.
    Vafaie, Maral
    Bertens, Koen
    Sytnyk, Mykhailo
    Pina, Joao M.
    Sagar, Laxmi Kishore
    Ouellette, Olivier
    Proppe, Andrew H.
    Rasouli, Armin Sedighian
    Gao, Yajun
    Baek, Se-Woong
    Chen, Bin
    Laquai, Frederic
    Hoogland, Sjoerd
    de Arquer, F. Pelayo Garica
    Heiss, Wolfgang
    Sargent, Edward H.
    NANO LETTERS, 2020, 20 (07) : 5284 - 5291
  • [23] Hybrid passivated colloidal quantum dot solids
    Ip, Alexander H.
    Thon, Susanna M.
    Hoogland, Sjoerd
    Voznyy, Oleksandr
    Zhitomirsky, David
    Debnath, Ratan
    Levina, Larissa
    Rollny, Lisa R.
    Carey, Graham H.
    Fischer, Armin
    Kemp, Kyle W.
    Kramer, Illan J.
    Ning, Zhijun
    Labelle, Andre J.
    Chou, Kang Wei
    Amassian, Aram
    Sargent, Edward H.
    NATURE NANOTECHNOLOGY, 2012, 7 (09) : 577 - 582
  • [24] Hybrid passivated colloidal quantum dot solids
    Alexander H. Ip
    Susanna M. Thon
    Sjoerd Hoogland
    Oleksandr Voznyy
    David Zhitomirsky
    Ratan Debnath
    Larissa Levina
    Lisa R. Rollny
    Graham H. Carey
    Armin Fischer
    Kyle W. Kemp
    Illan J. Kramer
    Zhijun Ning
    André J. Labelle
    Kang Wei Chou
    Aram Amassian
    Edward H. Sargent
    Nature Nanotechnology, 2012, 7 (9) : 577 - 582
  • [25] Facet Control for Trap-State Suppression in Colloidal Quantum Dot Solids
    Xia, Yong
    Chen, Wei
    Zhang, Peng
    Liu, Sisi
    Wang, Kang
    Yang, Xiaokun
    Tang, Haodong
    Lian, Linyuan
    He, Jungang
    Liu, Xinxing
    Liang, Guijie
    Tan, Manlin
    Gao, Liang
    Liu, Huan
    Song, Haisheng
    Zhang, Daoli
    Gao, Jianbo
    Wang, Kai
    Lan, Xinzheng
    Zhang, Xiuwen
    Mueller-Buschbaum, Peter
    Tang, Jiang
    Zhang, Jianbing
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (22)
  • [26] PbS Colloidal Quantum Dot Photodetectors operating in the near infrared
    Andrea De Iacovo
    Carlo Venettacci
    Lorenzo Colace
    Leonardo Scopa
    Sabrina Foglia
    Scientific Reports, 6
  • [27] PbS Colloidal Quantum Dot Inks for Infrared Solar Cells
    Zheng, Siyu
    Chen, Jingxuan
    Johansson, Erik M. J.
    Zhang, Xiaoliang
    ISCIENCE, 2020, 23 (11)
  • [28] Photocarrier Radiometry Characteristics of PbS Colloidal Quantum Dot Films
    Luo Donghui
    Wang Qian
    Zhao Zitao
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (09)
  • [29] PbS Colloidal Quantum Dot Photodetectors operating in the near infrared
    De Iacovo, Andrea
    Venettacci, Carlo
    Colace, Lorenzo
    Scopa, Leonardo
    Foglia, Sabrina
    SCIENTIFIC REPORTS, 2016, 6
  • [30] Colloidal nanocrystal quantum dot assemblies as artificial solids
    Hanrath, Tobias
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (03):