High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces

被引:39
|
作者
Dellantonio, Luca [1 ,2 ]
Sorensen, Anders S. [1 ,2 ]
Bacco, Davide [3 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Ctr Hybrid Quantum Networks Hy Q, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[3] Tech Univ Denmark, Dept Photon Engn, DTU Foton, CoE SPOC, Orsteds Plads 340, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
SECURITY; CRYPTOGRAPHY; ATTACK; PROOF;
D O I
10.1103/PhysRevA.98.062301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum key distribution (QKD) provides ultimate cryptographic security based on the laws of quantum mechanics. For point-to-point QKD protocols, the security of the generated key is compromised by detector side channel attacks. This problem can be solved with measurement-device-independent QKD (mdi-QKD). However, mdi-QKD has shown limited performances in terms of the secret key generation rate, due to postselection in the Bell measurements. We show that high-dimensional (Hi-D) encoding (qudits) improves the performance of current mdi-QKD implementations. The scheme is proven to be unconditionally secure even for weak coherent pulses with decoy states, while the secret key rate is derived in the single-photon case. Our analysis includes phase errors, imperfect sources, and dark counts to mimic real systems. Compared to the standard bidimensional case, we show an improvement in the key generation rate.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Two High-Dimensional Cartesian Bases for Quantum Key Distribution
    Tentrup, Tristan B. H.
    Luiten, Willemijn M.
    Hooijschuur, Peter
    van der Meer, Reinier
    Pinkse, Pepijn W. H.
    2017 16TH WORKSHOP ON INFORMATION OPTICS (WIO), 2017,
  • [42] Measurement-device-independent quantum key distribution with classical Bob and no joint measurement
    Guang Ping He
    Quantum Information Processing, 2022, 21
  • [43] Measurement-device-independent quantum key distribution with classical Bob and no joint measurement
    He, Guang Ping
    QUANTUM INFORMATION PROCESSING, 2022, 21 (01)
  • [44] Integrated measurement server for measurement-device-independent quantum key distribution network
    Wang, Ci-Yu
    Gao, Jun
    Jiao, Zhi-Qiang
    Qiao, Lu-Feng
    Ren, Ruo-Jing
    Feng, Zhen
    Chen, Yuan
    Yan, Zeng-Quan
    Wang, Yao
    Tang, Hao
    Jin, Xian-Min
    OPTICS EXPRESS, 2019, 27 (05): : 5982 - 5989
  • [45] Measurement-device-independent Quantum Key Distribution with Inaccurate Coherent Sources
    Kang, Guo-Dong
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [46] A Voltage Pulse Generator for Measurement-Device-Independent Quantum Key Distribution
    Zhang, Sijie
    Zhou, Nan
    Deng, Fanshui
    Liang, Hao
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (07) : 1100 - 1106
  • [47] Measurement-device-independent quantum key distribution with q-plate
    Dong Chen
    Zhao Shang-Hong
    Sun Ying
    QUANTUM INFORMATION PROCESSING, 2015, 14 (12) : 4575 - 4584
  • [48] Squeezed-State Measurement-Device-Independent Quantum Key Distribution
    Zhang, Yi-Chen
    Yu, Song
    Gu, Wanyi
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [49] Asynchronous measurement-device-independent quantum key distribution with hybrid source
    Bai, Jun-Lin
    Xie, Yuan-Mei
    Fu, Yao
    Yin, Hua-Lei
    Chen, Zeng-Bing
    OPTICS LETTERS, 2023, 48 (13) : 3551 - 3554
  • [50] Measurement-device-independent quantum key distribution with hyper-encoding
    Zheng-Xia Cui
    Wei Zhong
    Lan Zhou
    Yu-Bo Sheng
    Science China(Physics,Mechanics & Astronomy), 2019, (11) : 47 - 56