High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces

被引:39
|
作者
Dellantonio, Luca [1 ,2 ]
Sorensen, Anders S. [1 ,2 ]
Bacco, Davide [3 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Ctr Hybrid Quantum Networks Hy Q, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[3] Tech Univ Denmark, Dept Photon Engn, DTU Foton, CoE SPOC, Orsteds Plads 340, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
SECURITY; CRYPTOGRAPHY; ATTACK; PROOF;
D O I
10.1103/PhysRevA.98.062301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum key distribution (QKD) provides ultimate cryptographic security based on the laws of quantum mechanics. For point-to-point QKD protocols, the security of the generated key is compromised by detector side channel attacks. This problem can be solved with measurement-device-independent QKD (mdi-QKD). However, mdi-QKD has shown limited performances in terms of the secret key generation rate, due to postselection in the Bell measurements. We show that high-dimensional (Hi-D) encoding (qudits) improves the performance of current mdi-QKD implementations. The scheme is proven to be unconditionally secure even for weak coherent pulses with decoy states, while the secret key rate is derived in the single-photon case. Our analysis includes phase errors, imperfect sources, and dark counts to mimic real systems. Compared to the standard bidimensional case, we show an improvement in the key generation rate.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Practical aspects of measurement-device-independent quantum key distribution
    Xu, Feihu
    Curty, Marcos
    Qi, Bing
    Lo, Hoi-Kwong
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [22] Measurement-device-independent quantum key distribution for nonstandalone networks
    Fan-Yuan, Guan-Jie
    Lu, Feng-Yu
    Wang, Shuang
    Yin, Zhen-Qiang
    He, De-Yong
    Zhou, Zheng
    Teng, Jun
    Chen, Wei
    Guo, Guang-Can
    Han, Zheng-Fu
    PHOTONICS RESEARCH, 2021, 9 (10) : 1881 - 1891
  • [23] Efficient passive measurement-device-independent quantum key distribution
    Zhang, Chun-Hui
    Zhang, Chun-Mei
    Wang, Qin
    PHYSICAL REVIEW A, 2019, 99 (05)
  • [24] Measurement-device-independent quantum key distribution with leaky sources
    Weilong Wang
    Kiyoshi Tamaki
    Marcos Curty
    Scientific Reports, 11
  • [25] Alternative schemes for measurement-device-independent quantum key distribution
    Ma, Xiongfeng
    Razavi, Mohsen
    PHYSICAL REVIEW A, 2012, 86 (06):
  • [26] Measurement-device-independent quantum key distribution for nonstandalone networks
    GUAN-JIE FAN-YUAN
    FENG-YU LU
    SHUANG WANG
    ZHEN-QIANG YIN
    DE-YONG HE
    ZHENG ZHOU
    JUN TENG
    WEI CHEN
    GUANG-CAN GUO
    ZHENG-FU HAN
    Photonics Research, 2021, 9 (10) : 1881 - 1891
  • [27] Fully passive measurement-device-independent quantum key distribution
    Li, Jinjie
    Wang, Wenyuan
    Lo, Hoi-Kwong
    PHYSICAL REVIEW APPLIED, 2024, 21 (06):
  • [28] Field Test of Measurement-Device-Independent Quantum Key Distribution
    Tang, Yan-Lin
    Yin, Hua-Lei
    Chen, Si-Jing
    Liu, Yang
    Zhang, Wei-Jun
    Jiang, Xiao
    Zhang, Lu
    Wang, Jian
    You, Li-Xing
    Guan, Jian-Yu
    Yang, Dong-Xu
    Wang, Zhen
    Liang, Hao
    Zhang, Zhen
    Zhou, Nan
    Ma, Xiongfeng
    Chen, Teng-Yun
    Zhang, Qiang
    Pan, Jian-Wei
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (03) : 116 - 122
  • [29] New scheme for measurement-device-independent quantum key distribution
    Lian Wang
    Yuan-Yuan Zhou
    Xue-Jun Zhou
    Xiao Chen
    Zheng Zhang
    Quantum Information Processing, 2018, 17
  • [30] Intensity correlations in measurement-device-independent quantum key distribution
    Liu, Junxuan
    Xing, Tianyi
    Liu, Ruiyin
    Chen, Zihao
    Tan, Hao
    Huang, Anqi
    OPTICS EXPRESS, 2024, 32 (22): : 38394 - 38406