Binocular Light-Field: Imaging Theory and Occlusion-Robust Depth Perception Application

被引:19
|
作者
Liu, Fei [1 ,2 ]
Zhou, Shubo [1 ,2 ]
Wang, Yunlong [1 ,2 ]
Hou, Guangqi [1 ,2 ]
Sun, Zhenan [1 ,2 ]
Tan, Tieniu [1 ,2 ]
机构
[1] Univ Chinese Acad Sci CASIA, Ctr Res Intelligent Percept & Comp CRIPAC, NLPR, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci CASIA, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Binocular-LF imaging; depth estimation; imaging modeling; occlusion robust; SCALE COST AGGREGATION; SUPER RESOLUTION;
D O I
10.1109/TIP.2019.2943019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Binocular stereo vision (SV) has been widely used to reconstruct the depth information, but it is quite vulnerable to scenes with strong occlusions. As an emerging computational photography technology, light-field (LF) imaging brings about a novel solution to passive depth perception by recording multiple angular views in a single exposure. In this paper, we explore binocular SV and LF imaging to form the binocular-LF imaging system. An imaging theory is derived by modeling the imaging process and analyzing disparity properties based on the geometrical optics theory. Then an accurate occlusion-robust depth estimation algorithm is proposed by exploiting multi-baseline stereo matching cues and defocus cues. The occlusions caused by binocular SV and LF imaging are detected and handled to eliminate the matching ambiguities and outliers. Finally, we develop a binocular-LF database and capture real-world scenes by our binocular-LF system to test the accuracy and robustness. The experimental results demonstrate that the proposed algorithm definitely recovers high quality depth maps with smooth surfaces and precise geometric shapes, which tackles the drawbacks of binocular SV and LF imaging simultaneously.
引用
收藏
页码:1628 / 1640
页数:13
相关论文
共 50 条
  • [31] Depth Estimation for Glossy Surfaces with Light-Field Cameras
    Tao, Michael W.
    Wang, Ting-Chun
    Malik, Jitendra
    Ramamoorthi, Ravi
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT II, 2015, 8926 : 533 - 547
  • [32] Holographic and light-field imaging for augmented reality
    Lee, Byoungho
    Hong, Jong-Young
    Jang, Changwon
    Jeong, Jinsoo
    Lee, Chang-Kun
    EMERGING LIQUID CRYSTAL TECHNOLOGIES XII, 2017, 10125
  • [33] Lensless light-field imaging using LMI
    Mo, Chen
    Liu, Xiaoli
    Tong, Jun
    Xi, Jiangtao
    Yu, Yanguang
    Cai, Zewei
    OPTICS EXPRESS, 2024, 32 (22): : 38112 - 38127
  • [34] ROBUST IRIS RECOGNITION USING LIGHT-FIELD CAMERA
    Raja, Kiran B.
    Raghavendra, R.
    Cheikh, Faouzi Alaya
    Yang, Bian
    Busch, Christoph
    2013 COLOUR AND VISUAL COMPUTING SYMPOSIUM (CVCS), 2013,
  • [35] Terahertz Light-Field Imaging With Silicon Technologies
    Pfeiffer, U. R.
    Kutaish, A.
    IEEE OPEN JOURNAL OF THE SOLID-STATE CIRCUITS SOCIETY, 2024, 4 : 1 - 11
  • [36] Utilizing Light-field Imaging Technology in Neurosurgery
    Chen, Brian R.
    Buchanan, Ian A.
    Kellis, Spencer
    Kramer, Daniel
    Ohiorhenuan, Ifije
    Blumenfeld, Zack
    Grisafe, Dominic J., II
    Barbaro, Michael F.
    Gogia, Angad S.
    Lu, James Y.
    Chen, Beverly B.
    Lee, Brian
    CUREUS, 2018, 10 (04):
  • [37] Depth and all-in-focus imaging by a multi-line-scan light-field camera
    Stolc, Svorad
    Soukup, Daniel
    Hollaender, Branislav
    Huber-Moerk, Reinhold
    JOURNAL OF ELECTRONIC IMAGING, 2014, 23 (05)
  • [38] Occlusion Robust Light Field Depth Estimation Using Segmentation Guided Bilateral Filtering
    Hou, Qiuxia
    Jung, Cheolkon
    2017 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2017, : 14 - 18
  • [39] DEPTH ESTIMATION BY ANALYZING INTENSITY DISTRIBUTION FOR LIGHT-FIELD CAMERAS
    Xu, Yatong
    Jin, Xin
    Dai, Qionghai
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3540 - 3544
  • [40] Light-field compression using a pair of steps and depth estimation
    Huang, Xinpeng
    An, Ping
    Cao, Fengyin
    Liu, Deyang
    Wu, Qiang
    OPTICS EXPRESS, 2019, 27 (03): : 3557 - 3573