Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials

被引:23
|
作者
Mursaleen, M. [1 ,2 ]
Ansari, Khursheed J. [3 ]
Nasiruzzaman, Md [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Operator Theory & Applicat Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[3] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
关键词
BERNSTEIN-KANTOROVICH OPERATORS;
D O I
10.1007/s40995-017-0331-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present paper, we introduce q-analogue of the Jakimovski-Leviatan operators with the help of q-Appell polynomials. We establish some moments and auxiliary results by using q-derivatives and then prove a basic convergence theorem. Also, the Voronovskaja-type asymptotic formula and some direct results for the above operators are discussed. Moreover, the rate of convergence and weighted approximation by these operators in terms of modulus of continuity are studied.
引用
收藏
页码:891 / 900
页数:10
相关论文
共 50 条