Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials

被引:23
|
作者
Mursaleen, M. [1 ,2 ]
Ansari, Khursheed J. [3 ]
Nasiruzzaman, Md [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Operator Theory & Applicat Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[3] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
关键词
BERNSTEIN-KANTOROVICH OPERATORS;
D O I
10.1007/s40995-017-0331-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present paper, we introduce q-analogue of the Jakimovski-Leviatan operators with the help of q-Appell polynomials. We establish some moments and auxiliary results by using q-derivatives and then prove a basic convergence theorem. Also, the Voronovskaja-type asymptotic formula and some direct results for the above operators are discussed. Moreover, the rate of convergence and weighted approximation by these operators in terms of modulus of continuity are studied.
引用
收藏
页码:891 / 900
页数:10
相关论文
共 50 条
  • [21] SOME CHARACTERIZATIONS OF APPELL AND Q-APPELL POLYNOMIALS
    SRIVASTAVA, HM
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 130 : 321 - 329
  • [22] Approximation using Jakimovski–Leviatan operators of Durrmeyer type with 2D-Appell polynomials
    Manoj Kumar
    Nusrat Raza
    M. Mursaleen
    Journal of Inequalities and Applications, 2025 (1)
  • [23] Approximation by Jakimovski-Leviatan-Pǎltǎnea operators involving Sheffer polynomials
    M. Mursaleen
    A. A. H. AL-Abeid
    Khursheed J. Ansari
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1251 - 1265
  • [24] On the Approximation of Szász-Jakimovski-Leviatan Beta Type Integral Operators Enhanced by Appell Polynomials
    Ayman-Mursaleen, Mohammad
    Nasiruzzaman, Md.
    Rao, Nadeem
    IRANIAN JOURNAL OF SCIENCE, 2025,
  • [25] LINEARIZATION OF PRODUCT OF Q-APPELL POLYNOMIALS
    FLANDERS, H
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (05): : 403 - 404
  • [26] Difference equations of q-Appell polynomials
    Mahmudov, Nazim I.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 539 - 543
  • [27] APPROXIMATION BY BEZIER VARIANT OF JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS INVOLVING SHEFFER POLYNOMIALS
    Agrawal, P. N.
    Kumar, Ajay
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1522 - 1536
  • [28] q-Difference equations for the 2-iterated q-Appell and mixed type q-Appell polynomials
    Srivastava, H. M.
    Khan, Subuhi
    Riyasat, Mumtaz
    ARABIAN JOURNAL OF MATHEMATICS, 2019, 8 (01) : 63 - 77
  • [29] q-Difference equations for the 2-iterated q-Appell and mixed type q-Appell polynomials
    H. M. Srivastava
    Subuhi Khan
    Mumtaz Riyasat
    Arabian Journal of Mathematics, 2019, 8 : 63 - 77
  • [30] Certain approximation properties of Brenke polynomials using Jakimovski–Leviatan operators
    Shahid Ahmad Wani
    M. Mursaleen
    Kottakkaran Sooppy Nisar
    Journal of Inequalities and Applications, 2021