Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water

被引:112
|
作者
Liu, Kang [1 ]
Zhang, Fu-Shen [1 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Dept Solid Waste Treatment & Recycling, 18 Shuangqing Rd, Beijing 100085, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent lithium-ion battery; Dechlorination; Polyvinyl chloride; Metal leaching; Subcritical water; BROMINATED EPOXY-RESIN; PRINTED-CIRCUIT BOARDS; HYDROMETALLURGICAL PROCESS; VALUABLE METALS; SUPERCRITICAL WATER; ORGANIC-ACIDS; RECOVERY; DEGRADATION; DECOMPOSITION; PVC;
D O I
10.1016/j.jhazmat.2016.04.080
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, an effective and environmentally friendly process for the recovery of cobalt (Co) and lithium (Li) from spent lithium-ion batteries (LIBs) and simultaneously detoxification of polyvinyl chloride (PVC) in subcritical water was developed. Lithium cobalt oxide (LiCoO2) power from spent LIBs and PVC were co-treated by subcritical water oxidation, in which PVC served as a hydrochloric acid source to promote metal leaching. The dechlorination of PVC and metal leaching was achieved simultaneously under subcritical water oxidation. More than 95% Co and nearly 98% Li were recovered under the optimum conditions: temperature 350 degrees C, PVC/LiCoO2 ratio 3:1, time 30 min, and a solid/liquid ratio 16:1 (g/L), respectively. Moreover, PVC was completely dechlorinated at temperatures above 350 degrees C without any release of toxic chlorinated organic compounds. Assessment on economical and environmental impacts revealed that the PVC and LiCoO2 subcritical co-treatment process had significant technical, economic and environmental benefits over the traditional hydrometallurgy and pyrometallurgy processes. This innovative co-treatment process is efficient, environmentally friendly and adequate for Co and Li recovery from spent LIBs and simultaneous dechlorination of PVC in subcritical water. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 25
页数:7
相关论文
共 50 条
  • [41] Separation and Comprehensive Recovery of Cobalt, Nickel, and Lithium from Spent Power Lithium-Ion Batteries
    Ma, Liwen
    Xi, Xiaoli
    Zhang, Zhengzheng
    Lyu, Zhe
    MINERALS, 2022, 12 (04)
  • [42] Mechanism of Lithium and Cobalt Recovery from Spent Lithium-ion Batteries by Sulfation Roasting Process
    Yueshan Yu
    Dahui Wang
    Huaijing Chen
    Xiaodong Zhang
    Li Xu
    Lixin Yang
    Chemical Research in Chinese Universities, 2020, 36 : 908 - 914
  • [43] Mechanism of Lithium and Cobalt Recovery from Spent Lithium-ion Batteries by Sulfation Roasting Process
    Yu Yueshan
    Wang Dahui
    Chen Huaijing
    Zhang Xiaodong
    Xu Li
    Yang Lixin
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (05) : 908 - 914
  • [44] A cavitation enabled green leaching of metals from spent lithium-ion batteries
    Okonkwo, Emenike G.
    Wheatley, Greg
    Liu, Yang
    He, Yinghe
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2024, 202
  • [45] Treatment of valuable metals from leaching solution of spent lithium-ion batteries
    Dalini, E. Asadi
    Karimi, Gh.
    Zandevakili, S.
    MINERALS ENGINEERING, 2021, 173
  • [46] Recovery of lithium from spent Lithium-Ion batteries using Lewis acidic Manganous chloride
    Yang, Yongxia
    Guan, Ting
    Lv, Weiguang
    Sun, Zhi
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 363
  • [47] Graphene from Spent Lithium-Ion Batteries
    Divya, Madhusoodhanan Lathika
    Natarajan, Subramanian
    Aravindan, Vanchiappan
    BATTERIES & SUPERCAPS, 2022, 5 (06)
  • [48] Selective recycling of lithium from spent lithium-ion batteries by carbothermal reduction combined with multistage leaching
    Zhang, Guangwen
    Yuan, Xue
    Tay, Chor Yong
    He, Yaqun
    Wang, Haifeng
    Duan, Chenlong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 314
  • [49] Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)
    Guo, Yang
    Li, Feng
    Zhu, Haochen
    Li, Guangming
    Huang, Juwen
    He, Wenzhi
    WASTE MANAGEMENT, 2016, 51 : 227 - 233
  • [50] Efficient separation and recovery of lithium and manganese from spent lithium-ion batteries powder leaching solution
    Shi, Pengfei
    Yang, Shenghai
    Wu, Guoqing
    Chen, Huayong
    Chang, Di
    Jie, Yafei
    Fang, Gang
    Mo, Caixuan
    Chen, Yongming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 309