Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water

被引:112
|
作者
Liu, Kang [1 ]
Zhang, Fu-Shen [1 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Dept Solid Waste Treatment & Recycling, 18 Shuangqing Rd, Beijing 100085, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent lithium-ion battery; Dechlorination; Polyvinyl chloride; Metal leaching; Subcritical water; BROMINATED EPOXY-RESIN; PRINTED-CIRCUIT BOARDS; HYDROMETALLURGICAL PROCESS; VALUABLE METALS; SUPERCRITICAL WATER; ORGANIC-ACIDS; RECOVERY; DEGRADATION; DECOMPOSITION; PVC;
D O I
10.1016/j.jhazmat.2016.04.080
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, an effective and environmentally friendly process for the recovery of cobalt (Co) and lithium (Li) from spent lithium-ion batteries (LIBs) and simultaneously detoxification of polyvinyl chloride (PVC) in subcritical water was developed. Lithium cobalt oxide (LiCoO2) power from spent LIBs and PVC were co-treated by subcritical water oxidation, in which PVC served as a hydrochloric acid source to promote metal leaching. The dechlorination of PVC and metal leaching was achieved simultaneously under subcritical water oxidation. More than 95% Co and nearly 98% Li were recovered under the optimum conditions: temperature 350 degrees C, PVC/LiCoO2 ratio 3:1, time 30 min, and a solid/liquid ratio 16:1 (g/L), respectively. Moreover, PVC was completely dechlorinated at temperatures above 350 degrees C without any release of toxic chlorinated organic compounds. Assessment on economical and environmental impacts revealed that the PVC and LiCoO2 subcritical co-treatment process had significant technical, economic and environmental benefits over the traditional hydrometallurgy and pyrometallurgy processes. This innovative co-treatment process is efficient, environmentally friendly and adequate for Co and Li recovery from spent LIBs and simultaneous dechlorination of PVC in subcritical water. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 25
页数:7
相关论文
共 50 条
  • [21] Recovery of Cobalt, Nickel, and Lithium from Spent Lithium-Ion Batteries with Gluconic Acid Leaching Process: Kinetics Study
    Gerold, Eva
    Lerchbammer, Reinhard
    Antrekowitsch, Helmut
    BATTERIES-BASEL, 2024, 10 (04):
  • [22] Cobalt recovery and microspherical cobalt tetroxide preparation from ammonia leaching solution of spent lithium-ion batteries
    Yu, Jian-cheng
    Ma, Bao-zhong
    Shao, Shuang
    Wang, Cheng-yan
    Chen, Yong-qiang
    Zhang, Wen-juan
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2022, 32 (09) : 3136 - 3148
  • [23] Hydrometallurgical process for recovery of lithium and cobalt from spent lithium-ion secondary batteries
    Tsai, Lung-Chang
    Tsai, Fang-Chang
    Ma, Ning
    Shu, Chi-Min
    ENVIRONMENT MATERIALS AND ENVIRONMENT MANAGEMENT PTS 1-3, 2010, 113-116 : 1688 - +
  • [24] Manufacturing of Lithium Cobalt Oxide from Spent Lithium-Ion Batteries: A Cathode Material
    Methekar, Ravi
    Anwani, Sandeep
    INNOVATIONS IN INFRASTRUCTURE, 2019, 757 : 233 - 241
  • [25] Recovery of Lithium Cobalt Oxide Material from the Cathode of Spent Lithium-Ion Batteries
    Zhang, Zheming
    He, Wenzhi
    Li, Guangming
    Xia, Jing
    Hu, Huikang
    Huang, Juwen
    Zhang, Shengbo
    ECS ELECTROCHEMISTRY LETTERS, 2014, 3 (06) : A58 - A61
  • [26] MECHANOCHEMICAL EFFICIENT RECOVERY OF COBALT FROM SPENT LITHIUM-ION BATTERIES (LiBs) BY CHLORIDE SOLUTIONS
    Li, X.
    Liu, Q. Z.
    Yu, H. H.
    METALURGIJA, 2024, 63 (3-4): : 413 - 415
  • [27] Priority recovery of lithium and effective leaching of nickel and cobalt from spent lithium-ion battery
    Cao, Ning
    Zhang, Ya-li
    Chen, Lin-lin
    Jia, Yun
    Huang, Yao-guo
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2022, 32 (05) : 1677 - 1690
  • [28] Innovative Method to Recover Graphite from Spent Lithium-Ion Batteries
    Lu, Qichang
    Wang, Min
    Peng, Zhengjun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (16) : 6157 - 6168
  • [29] Recycling of graphite from spent lithium-ion batteries via low-temperature polyvinyl chloride roasting-assisted leaching
    Zeng, Guisheng
    Zhou, Rui
    Hu, Chongwen
    Zhao, Haohan
    Gao, Hanxiao
    Huang, Jianwen
    Yu, Jiaping
    Luo, Feng
    Wang, Zhongbing
    Deng, Chunjian
    He, Junwei
    Liu, Chunli
    CARBON, 2025, 238
  • [30] Use of electrochemical cathode-reduction method for leaching of cobalt from spent lithium-ion batteries
    Meng, Qi
    Zhang, Yingjie
    Dong, Peng
    JOURNAL OF CLEANER PRODUCTION, 2018, 180 : 64 - 70