2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model

被引:130
|
作者
Chen, Yaoran [1 ]
Wang, Yan [1 ]
Dong, Zhikun [1 ]
Su, Jie [1 ]
Han, Zhaolong [1 ,2 ,3 ,4 ]
Zhou, Dai [1 ,2 ,3 ,4 ]
Zhao, Yongsheng [1 ,2 ]
Bao, Yan [1 ,2 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Hydrodynam, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Maintenance Bldg & Infra, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Regional wind speed prediction; CNN; LSTM; Temporal series fitness; Spatial distribution; NEURAL-NETWORK; PREDICTION; DECOMPOSITION; EMISSIONS; IMPACT; STATE; FARM;
D O I
10.1016/j.enconman.2021.114451
中图分类号
O414.1 [热力学];
学科分类号
摘要
Short-term wind speed forecast is of great importance to wind farm regulation and its early warning. Previous studies mainly focused on the prediction at a single location but few extended the task to 2-D wind plane. In this study, a novel deep learning model was proposed for a 2-D regional wind speed forecast, using the combination of the auto-encoder of convolutional neural network (CNN) and the long short-term memory unit (LSTM). The 12-hidden-layer deep CNN was adopted to encode the high dimensional 2-D input into the embedding vector and inversely, to decode such latent representation after it was predicted by the LSTM module based on historical data. The model performance was compared with parallel models under different criteria, including MAE, RMSE and R2, all showing stable and considerable enhancements. For instance, the overall MAE value dropped to 0.35 m/s for the current model, which is 32.7%, 28.8% and 18.9% away from the prediction results using the persistence, basic ANN and LSTM model. Moreover, comprehensive discussions were provided from both temporal and spatial views of analysis, revealing that the current model can not only offer an accurate wind speed forecast along timeline (R2 equals to 0.981), but also give a distinct estimation of the spatial wind speed distribution in 2-D wind farm.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Short-term wind power forecast based on MOSTAR model
    Chen H.
    Zhang J.
    Xu C.
    Tan F.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2019, 47 (01): : 73 - 79
  • [42] Short-Term Load Forecasting Based on PSO-KFCM Daily Load Curve Clustering and CNN-LSTM Model
    Shang, Chuan
    Gao, Junwei
    Liu, Huabo
    Liu, Fuzheng
    IEEE ACCESS, 2021, 9 : 50344 - 50357
  • [43] Hybrid Bidirectional LSTM Model for Short-Term Wind Speed Interval Prediction
    Saeed, Adnan
    Li, Chaoshun
    Danish, Mohd
    Rubaiee, Saeed
    Tang, Geng
    Gan, Zhenhao
    Ahmed, Anas
    IEEE ACCESS, 2020, 8 (08): : 182283 - 182294
  • [44] Islanding detection in microgrid using deep learning based on 1D CNN and CNN-LSTM networks
    Ozcanli, Asiye Kaymaz
    Baysal, Mustafa
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2022, 32
  • [45] Prediction of Flow Based on a CNN-LSTM Combined Deep Learning Approach
    Li, Peifeng
    Zhang, Jin
    Krebs, Peter
    WATER, 2022, 14 (06)
  • [46] Short-term wind speed prediction based on deep learning and intelligent optimization algorithm
    Guan, Peilong
    Wu, Zixi
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1054 - 1058
  • [47] An ensemble deep learning model for short-term load forecasting based on ARIMA and LSTM
    Tang, Lingling
    Yi, Yulin
    Peng, Yuexing
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2019,
  • [48] A deep learning algorithm based on 1D CNN-LSTM for automatic sleep staging
    Zhao, Dechun
    Jiang, Renpin
    Feng, Mingyang
    Yang, Jiaxin
    Wang, Yi
    Hou, Xiaorong
    Wang, Xing
    TECHNOLOGY AND HEALTH CARE, 2022, 30 (02) : 323 - 336
  • [49] Short-term Wind Speed Prediction with Master-slave Performance Based on CNN- LSTM and Improved POABP
    Chen, Gonggui
    Zhu, Mengyuan
    Huang, Jing
    Fu, Yi
    Xie, Xiaochuan
    Long, Hongyu
    ENGINEERING LETTERS, 2023, 31 (02) : 848 - 861
  • [50] Forecast on Short-Term Wind Speed and Wind Farm Power Generation
    Cheng, Yiping
    PROCEEDINGS OF THE 2015 4TH NATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING ( NCEECE 2015), 2016, 47 : 80 - 86