2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model

被引:130
|
作者
Chen, Yaoran [1 ]
Wang, Yan [1 ]
Dong, Zhikun [1 ]
Su, Jie [1 ]
Han, Zhaolong [1 ,2 ,3 ,4 ]
Zhou, Dai [1 ,2 ,3 ,4 ]
Zhao, Yongsheng [1 ,2 ]
Bao, Yan [1 ,2 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Hydrodynam, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Maintenance Bldg & Infra, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Regional wind speed prediction; CNN; LSTM; Temporal series fitness; Spatial distribution; NEURAL-NETWORK; PREDICTION; DECOMPOSITION; EMISSIONS; IMPACT; STATE; FARM;
D O I
10.1016/j.enconman.2021.114451
中图分类号
O414.1 [热力学];
学科分类号
摘要
Short-term wind speed forecast is of great importance to wind farm regulation and its early warning. Previous studies mainly focused on the prediction at a single location but few extended the task to 2-D wind plane. In this study, a novel deep learning model was proposed for a 2-D regional wind speed forecast, using the combination of the auto-encoder of convolutional neural network (CNN) and the long short-term memory unit (LSTM). The 12-hidden-layer deep CNN was adopted to encode the high dimensional 2-D input into the embedding vector and inversely, to decode such latent representation after it was predicted by the LSTM module based on historical data. The model performance was compared with parallel models under different criteria, including MAE, RMSE and R2, all showing stable and considerable enhancements. For instance, the overall MAE value dropped to 0.35 m/s for the current model, which is 32.7%, 28.8% and 18.9% away from the prediction results using the persistence, basic ANN and LSTM model. Moreover, comprehensive discussions were provided from both temporal and spatial views of analysis, revealing that the current model can not only offer an accurate wind speed forecast along timeline (R2 equals to 0.981), but also give a distinct estimation of the spatial wind speed distribution in 2-D wind farm.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Short-Term Crack in Sewer Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model
    Jang, Seung-Ju
    Jang, Seung-Yup
    JOURNAL OF THE KOREAN GEOSYNTHETIC SOCIETY, 2022, 21 (02): : 11 - 19
  • [22] Short-term Substation Load Forecast Based on Wide & Deep-LSTM Model
    Lü H.
    Wang W.
    Zhao B.
    Zhang Y.
    Guo Q.
    Hu W.
    Dianwang Jishu/Power System Technology, 2020, 44 (02): : 428 - 436
  • [23] Domain Fusion CNN-LSTM for Short-Term Power Consumption Forecasting
    Shao, Xiaorui
    Pu, Chen
    Zhang, Yuxin
    Kim, Chang Soo
    IEEE ACCESS, 2020, 8 : 188352 - 188362
  • [24] An ultra-short-term wind speed prediction model using LSTM and CNN
    Xu, Xining
    Wei, Yuzhou
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (08) : 10819 - 10837
  • [25] An ultra-short-term wind speed prediction model using LSTM and CNN
    Xining Xu
    Yuzhou Wei
    Multimedia Tools and Applications, 2022, 81 : 10819 - 10837
  • [26] Short-Term Solar Irradiance Forecasting Using CNN-1D, LSTM, and CNN-LSTM Deep Neural Networks: A Case Study With the Folsom (USA) Dataset
    Marinho, Felipe P.
    Rocha, Paulo A. C.
    Neto, Ajalmar R. R.
    Bezerra, Francisco D. V.
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (04):
  • [27] A Combined Deep Learning Method with Attention-Based LSTM Model for Short-Term Traffic Speed Forecasting
    Wu, Pan
    Huang, Zilin
    Pian, Yuzhuang
    Xu, Lunhui
    Li, Jinlong
    Chen, Kaixun
    JOURNAL OF ADVANCED TRANSPORTATION, 2020, 2020
  • [28] Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model
    Rahim Barzegar
    Mohammad Taghi Aalami
    Jan Adamowski
    Stochastic Environmental Research and Risk Assessment, 2020, 34 : 415 - 433
  • [29] A Method of Short-Term Load Prediction of Renewable Energy Power System Based on CNN-LSTM
    Yang, Zhiduan
    Li, Xiufen
    Kong, Xiangyu
    Li, Zehao
    Yuan, Ningping
    Li, Guoqing
    2022 25TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2022), 2022,
  • [30] X-ray spectra correction based on deep learning CNN-LSTM model
    Ma, Xing-Ke
    Huang, Hong-Quan
    Huang, Bo-Rui
    Shen, Zhi-Wen
    Wang, Qing-Tai
    Xiao, Yu -Yu
    Zhong, Cheng-Lin
    Xin, Hao
    Sun, Peng
    Jiang, Kai -Ming
    Tang, Lin
    Ding, Wei-Cheng
    Zhou, Wei
    Zhou, Jian-Bin
    MEASUREMENT, 2022, 199