Poisson-Lie structures on Poincare and Euclidean groups in three dimensions

被引:20
|
作者
Stachura, P [1 ]
机构
[1] Univ Warsaw, Fac Phys, Dept Math Methods Phys, PL-00325 Warsaw, Poland
来源
关键词
D O I
10.1088/0305-4470/31/19/018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The complete list of Poisson-Lie structures on Poincare and Euclidean groups in three dimensions is presented. Some new solutions for inhomogenous SO(p, q) are given.
引用
收藏
页码:4555 / 4564
页数:10
相关论文
共 50 条
  • [41] On Deformation Quantization of Poisson-Lie Groups and Moduli Spaces of Flat Connections
    Li-Bland, David
    Severa, Pavol
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (15) : 6734 - 6751
  • [42] Unimodularity and invariant volume forms for Hamiltonian dynamics on Poisson-Lie groups
    Gutierrez-Sagredo, I
    Iglesias Ponte, D.
    Marrero, J. C.
    Padron, E.
    Ravanpak, Z.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (01)
  • [43] Integrable deformations of Rossler and Lorenz systems from Poisson-Lie groups
    Ballesteros, Angel
    Blasco, Alfonso
    Musso, Fabio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (11) : 8207 - 8228
  • [44] Poisson-Lie T-duality and loop groups of Drinfeld doubles
    Klimcik, C
    Severa, P
    PHYSICS LETTERS B, 1996, 372 (1-2) : 65 - 71
  • [45] Poisson-Lie groups, bi-Hamiltonian systems and integrable deformations
    Ballesteros, Angel
    Marrero, Juan C.
    Ravanpak, Zohreh
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (14)
  • [46] Lotka-Volterra systems as Poisson-Lie dynamics on solvable groups
    Ballesteros, A.
    Blasco, A.
    Musso, F.
    XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 115 - 119
  • [47] Drinfel'd superdoubles and Poisson-Lie T-plurality in low dimensions
    Hlavaty, Ladislav
    Stepan, Vojtech
    Vysoky, Jan
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
  • [48] Poisson structures on double Lie groups
    Alekseevsky, D
    Grabowski, J
    Marmo, G
    Michor, PW
    JOURNAL OF GEOMETRY AND PHYSICS, 1998, 26 (3-4) : 340 - 379
  • [49] CLASSIFICATION OF FOUR-DIMENSIONAL REAL LIE BIALGEBRAS OF SYMPLECTIC TYPE AND THEIR POISSON-LIE GROUPS
    Abedi-Fardad, J.
    Rezaei-Aghdam, A.
    Haghighatdoost, Gh.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 190 (01) : 1 - 17
  • [50] Poisson-Lie T-duality
    Klimcik, C
    NUCLEAR PHYSICS B, 1996, : 116 - 121