Approximate controllability by adiabatic methods of the Schrodinger equation with nonlinear Hamiltonian.

被引:0
|
作者
Chittaro, Francesca Carlotta [1 ,2 ]
Mason, Paolo [3 ]
机构
[1] Aix Marseille Univ, CNRS, ENSAM, LSIS UMR 7296, F-13397 Marseille, France
[2] Univ Toulon & Var, CNRS, LSIS UMR 7296, F-83957 La Garde, France
[3] Univ Paris Sud, CNRS, Cent Supelec, L2S,UMR 8506, F-91192 Gif Sur Yvette, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider quantum systems described by a controlled Schrodinger equation, where the Hamiltonian depends smoothly on three external inputs. We use adiabatic techniques to provide a constructive controllability result in some portion of the discrete spectrum, provided that it is conically connected. The case of Schrodinger Hamiltonians with electromagnetic fields fits the nonlinear setting studied in this paper.
引用
收藏
页码:7771 / 7776
页数:6
相关论文
共 50 条
  • [41] Boundary controllability for the semilinear Schrodinger equation
    Deng, Li
    Yao, Peng-Fei
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 3423 - 3429
  • [42] Null Controllability of a Degenerate Schrodinger Equation
    Chrifi, Abderrazak
    Echarroudi, Younes
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (01)
  • [43] EXACT CONTROLLABILITY FOR THE SCHRODINGER-EQUATION
    MACHTYNGIER, E
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (01) : 24 - 34
  • [44] On Instability for the Quintic Nonlinear Schrodinger Equation of Some Approximate Periodic Solutions
    Cuccagna, Scipio
    Marzuola, Jeremy L.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (06) : 2053 - 2083
  • [46] ACCURACY OF AN APPROXIMATE VARIATIONAL SOLUTION PROCEDURE FOR THE NONLINEAR SCHRODINGER-EQUATION
    DESAIX, M
    ANDERSON, D
    LISAK, M
    PHYSICAL REVIEW A, 1989, 40 (05): : 2441 - 2445
  • [47] Non-adiabatic molecular Hamiltonian.: Canonical transformation coupling electronic and vibrational motions
    Hubac, I
    Babinec, P
    Polásek, M
    Urban, J
    Mach, P
    Másik, J
    Leszczynski, J
    QUANTUM SYSTEMS IN CHEMISTRY AND PHYSICS, VOL 1: BASIC PROBLEMS AND MODEL SYSTEMS, 2000, 2 : 383 - 400
  • [48] CONTROLLABILITY OF SCHRODINGER EQUATION WITH A NONLOCAL TERM
    De Leo, Mariano
    Sanchez Fernandez de la Vega, Constanza
    Rial, Diego
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2014, 20 (01) : 23 - 41
  • [49] APPROXIMATE SEPARATION OF SCHRODINGER EQUATION
    NARAYSZA.G
    PHYSICS LETTERS A, 1969, A 28 (09) : 598 - &
  • [50] A unified construction of variational methods for the nonlinear Schrodinger equation
    Kim, YE
    Zubarev, AL
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1998, 113 (09): : 1161 - 1174