On Instability for the Quintic Nonlinear Schrodinger Equation of Some Approximate Periodic Solutions

被引:0
|
作者
Cuccagna, Scipio [1 ]
Marzuola, Jeremy L. [2 ]
机构
[1] Univ Trieste, Dept Math & Geosci, I-34127 Trieste, Italy
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
关键词
SYMMETRY-BREAKING BIFURCATION; ASYMPTOTIC STABILITY; GROUND-STATES; STANDING WAVES; ENERGY SPACE; NLS; SCATTERING; TIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Fermi Golden Rule analysis developed in [CM], we prove asymptotic stability of asymmetric nonlinear bound states bifurcating from linear bound states for a quintic nonlinear Schrodinger operator with symmetric potential. This goes in the direction of proving that the approximate periodic solutions for the cubic Nonlinear Schrodinger Equation (NLSE) with symmetric potential in [MW] do not persist in the comparable quintic NLSE.
引用
收藏
页码:2053 / 2083
页数:31
相关论文
共 50 条
  • [1] Solitary wave and periodic wave solutions for the quintic discrete nonlinear Schrodinger equation
    Wu, Xiao-Fei
    CHAOS SOLITONS & FRACTALS, 2009, 40 (03) : 1240 - 1248
  • [2] Remarks on some periodic solutions of the nonlinear Schrodinger equation
    Grecu, D.
    Visinescu, Anca
    SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 365 - +
  • [3] STABILITY OF EXACT SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH PERIODIC POTENTIAL
    Kengne, E.
    Vaillancourt, R.
    NONLINEAR OSCILLATIONS, 2011, 13 (04): : 569 - 583
  • [4] MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION
    AKHMEDIEV, NN
    KORNEEV, VI
    THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) : 1089 - 1093
  • [5] Exact solutions for the quintic nonlinear Schrodinger equation with time and space
    Xu, Si-Liu
    Petrovic, Nikola
    Belic, Milivoj R.
    Deng, Wenwu
    NONLINEAR DYNAMICS, 2016, 84 (01) : 251 - 259
  • [6] Exact localized solutions of quintic discrete nonlinear Schrodinger equation
    Maruno, KI
    Ohta, Y
    Joshi, N
    PHYSICS LETTERS A, 2003, 311 (2-3) : 214 - 220
  • [7] Soliton solutions of an integrable nonlinear Schrodinger equation with quintic terms
    Chowdury, A.
    Kedziora, D. J.
    Ankiewicz, A.
    Akhmediev, N.
    PHYSICAL REVIEW E, 2014, 90 (03)
  • [8] Breather solutions of the integrable quintic nonlinear Schrodinger equation and their interactions
    Chowdury, A.
    Kedziora, D. J.
    Ankiewicz, A.
    Akhmediev, N.
    PHYSICAL REVIEW E, 2015, 91 (02):
  • [9] Exact solutions for the quintic nonlinear Schrodinger equation with inhomogeneous nonlinearity
    Belmonte-Beitia, Juan
    CHAOS SOLITONS & FRACTALS, 2009, 41 (02) : 1005 - 1009
  • [10] Exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Zhu, Jia-Min
    Ma, Zheng-Yi
    CHAOS SOLITONS & FRACTALS, 2007, 33 (03) : 958 - 964