On Instability for the Quintic Nonlinear Schrodinger Equation of Some Approximate Periodic Solutions

被引:0
|
作者
Cuccagna, Scipio [1 ]
Marzuola, Jeremy L. [2 ]
机构
[1] Univ Trieste, Dept Math & Geosci, I-34127 Trieste, Italy
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
关键词
SYMMETRY-BREAKING BIFURCATION; ASYMPTOTIC STABILITY; GROUND-STATES; STANDING WAVES; ENERGY SPACE; NLS; SCATTERING; TIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Fermi Golden Rule analysis developed in [CM], we prove asymptotic stability of asymmetric nonlinear bound states bifurcating from linear bound states for a quintic nonlinear Schrodinger operator with symmetric potential. This goes in the direction of proving that the approximate periodic solutions for the cubic Nonlinear Schrodinger Equation (NLSE) with symmetric potential in [MW] do not persist in the comparable quintic NLSE.
引用
收藏
页码:2053 / 2083
页数:31
相关论文
共 50 条
  • [31] Traveling-wave solutions of the cubic-quintic nonlinear Schrodinger equation
    Schurmann, HW
    PHYSICAL REVIEW E, 1996, 54 (04) : 4312 - 4320
  • [32] Modulational instability in the cubic-quintic nonlinear Schrodinger equation through the variational approach
    Ndzana, Fabien I. I.
    Mohamadou, Alidou
    Kofane, Timoleon Crepin
    OPTICS COMMUNICATIONS, 2007, 275 (02) : 421 - 428
  • [33] PERIODIC WAVES FOR THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION: EXISTENCE AND ORBITAL STABILITY
    Alves, Giovana
    Natali, Fabio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 854 - 871
  • [34] On the existence of dark solitons in a cubic-quintic nonlinear Schrodinger equation with a periodic potential
    Torres, Pedro J.
    Konotop, Vladimir V.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (01) : 1 - 9
  • [35] Peregrine Solitons on a Periodic Background in the Vector Cubic-Quintic Nonlinear Schrodinger Equation
    Ye, Yanlin
    Bu, Lili
    Wang, Wanwan
    Chen, Shihua
    Baronio, Fabio
    Mihalache, Dumitru
    FRONTIERS IN PHYSICS, 2020, 8
  • [36] Modulation instability gain and nonlinear modes generation in discrete cubic-quintic nonlinear Schrodinger equation
    Abbagari, Souleymanou
    Houwe, Alphonse
    Saliou, Youssoufa
    Akinyemi, Lanre
    Rezazadeh, Hadi
    Bouetou, Thomas Bouetou
    PHYSICS LETTERS A, 2022, 456
  • [37] Quasi-periodic solutions of a fractional nonlinear Schrodinger equation
    Li, Jing
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (10)
  • [38] ON THE LIFESPAN OF STRONG SOLUTIONS TO THE PERIODIC DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Fujiwara, Kazumasa
    Ozawa, Tohru
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2018, 7 (02): : 275 - 280
  • [39] PERIODIC-SOLUTIONS OF THE MIXED NONLINEAR SCHRODINGER-EQUATION
    CHOWDHURY, AR
    PAUL, S
    SEN, S
    PHYSICAL REVIEW D, 1985, 32 (12): : 3233 - 3237
  • [40] QUASI-PERIODIC SOLUTIONS FOR DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Gao, Meina
    Liu, Jianjun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) : 2101 - 2123