On Instability for the Quintic Nonlinear Schrodinger Equation of Some Approximate Periodic Solutions

被引:0
|
作者
Cuccagna, Scipio [1 ]
Marzuola, Jeremy L. [2 ]
机构
[1] Univ Trieste, Dept Math & Geosci, I-34127 Trieste, Italy
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
关键词
SYMMETRY-BREAKING BIFURCATION; ASYMPTOTIC STABILITY; GROUND-STATES; STANDING WAVES; ENERGY SPACE; NLS; SCATTERING; TIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Fermi Golden Rule analysis developed in [CM], we prove asymptotic stability of asymmetric nonlinear bound states bifurcating from linear bound states for a quintic nonlinear Schrodinger operator with symmetric potential. This goes in the direction of proving that the approximate periodic solutions for the cubic Nonlinear Schrodinger Equation (NLSE) with symmetric potential in [MW] do not persist in the comparable quintic NLSE.
引用
收藏
页码:2053 / 2083
页数:31
相关论文
共 50 条