Extensions of Lipschitz maps into Hadamard spaces

被引:38
|
作者
Lang, U
Pavlovic, B
Schroeder, V
机构
[1] ETH Zentrum, Dept Math, CH-8092 Zurich, Switzerland
[2] Trinity Coll Dublin, Sch Math, Dublin 2, Ireland
[3] Math Inst, Belgrade, Yugoslavia
[4] Univ Zurich, Math Inst, CH-8057 Zurich, Switzerland
关键词
D O I
10.1007/PL00001660
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every lambda -Lipschitz map f: S --> Y defined on a subset of an arbitrary metric space X possesses a c lambda -Lipschitz extension (f) over bar: X --> Y for some c = c(Y) greater than or equal to 1, provided Y is a Hadamard manifold which satisfies one of the following conditions: (i) Y has pinched negative sectional curvature, (ii) Y is homogeneous, (iii) Y is two-dimensional. In case (i) the constant c depends only on the dimension of Y and the pinching constant, in case (iii) one may take c := 4 root2. We obtain similar results for large classes of Hadamard spaces Y in the sense of Alexandrov.
引用
收藏
页码:1527 / 1553
页数:27
相关论文
共 50 条