We prove that every lambda -Lipschitz map f: S --> Y defined on a subset of an arbitrary metric space X possesses a c lambda -Lipschitz extension (f) over bar: X --> Y for some c = c(Y) greater than or equal to 1, provided Y is a Hadamard manifold which satisfies one of the following conditions: (i) Y has pinched negative sectional curvature, (ii) Y is homogeneous, (iii) Y is two-dimensional. In case (i) the constant c depends only on the dimension of Y and the pinching constant, in case (iii) one may take c := 4 root2. We obtain similar results for large classes of Hadamard spaces Y in the sense of Alexandrov.
机构:
Classe di Scienze, Scuola Normale Superiore, 56100 PisaClasse di Scienze, Scuola Normale Superiore, 56100 Pisa
Ambrosio L.
Durand-Cartagena E.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de MadridClasse di Scienze, Scuola Normale Superiore, 56100 Pisa
机构:
Fudan Univ, LMNS, Sch Math Sci, Shanghai 200433, Peoples R ChinaFudan Univ, LMNS, Sch Math Sci, Shanghai 200433, Peoples R China
Hua, Bobo
Liu, Shiping
论文数: 0引用数: 0
h-index: 0
机构:
Univ Durham, Dept Math Sci, Durham DH1 3LE, England
Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R ChinaFudan Univ, LMNS, Sch Math Sci, Shanghai 200433, Peoples R China
Liu, Shiping
Xia, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R ChinaFudan Univ, LMNS, Sch Math Sci, Shanghai 200433, Peoples R China