An Introduction to Variational Autoencoders

被引:1279
|
作者
Kingma, Diederik P. [1 ]
Welling, Max [2 ,3 ]
机构
[1] Google, Mountain View, CA 94043 USA
[2] Univ Amsterdam, Amsterdam, Netherlands
[3] Qualcomm, San Diego, CA USA
来源
关键词
GRADIENT; LIKELIHOOD; ALGORITHMS; MODELS;
D O I
10.1561/2200000056
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational autoencoders provide a principled framework for learning deep latent-variable models and corresponding inference models. In this work, we provide an introduction to variational autoencoders and some important extensions.
引用
收藏
页码:4 / 89
页数:86
相关论文
共 50 条
  • [41] Predictive Coding with Topographic Variational Autoencoders
    Keller, T. Anderson
    Welling, Max
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1086 - 1091
  • [42] Sequential Variational Autoencoders for Collaborative Filtering
    Sachdeva, Noveen
    Manco, Giuseppe
    Ritacco, Ettore
    Pudi, Vikram
    PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19), 2019, : 600 - 608
  • [43] Variational Autoencoders for Polyphonic Music Interpolation
    Dieguez, Pablo Lopez
    Soo, Von-Wun
    2020 25TH INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2020), 2020, : 56 - 61
  • [44] New Methods for Explainable Variational Autoencoders
    White, Riley
    Baracat-Donovan, Brian
    Helmsen, John
    McCullough, Thomas
    ARTIFICIAL INTELLIGENCE FOR SECURITY AND DEFENCE APPLICATIONS, 2023, 12742
  • [45] Scalable Graph Convolutional Variational Autoencoders
    Unyi, Daniel
    Gyires-Toth, Balint
    IEEE 15TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2021), 2021, : 467 - 472
  • [46] Variational Autoencoders for Baseball Player Evaluation
    Converse, Geoffrey
    Arnold, Brooke
    Curi, Mariana
    Oliveira, Suely
    FUZZY SYSTEMS AND DATA MINING V (FSDM 2019), 2019, 320 : 305 - 311
  • [47] Comment: Variational Autoencoders as Empirical Bayes
    Wang, Yixin
    Miller, Andrew C.
    Blei, David M.
    STATISTICAL SCIENCE, 2019, 34 (02) : 229 - 233
  • [48] Visualizing population structure with variational autoencoders
    Battey, C. J.
    Coffing, Gabrielle C.
    Kern, Andrew D.
    G3-GENES GENOMES GENETICS, 2021, 11 (01):
  • [49] HIERARCHICAL VARIATIONAL AUTOENCODERS FOR VISUAL COUNTERFACTUALS
    Vercheval, Nicolas
    Pizurica, Aleksandra
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2513 - 2517
  • [50] Interpretable Variational Autoencoders for Cognitive Models
    Curi, Mariana
    Converse, Geoffrey A.
    Hajewski, Jeff
    Oliveira, Suely
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,