An Introduction to Variational Autoencoders

被引:1279
|
作者
Kingma, Diederik P. [1 ]
Welling, Max [2 ,3 ]
机构
[1] Google, Mountain View, CA 94043 USA
[2] Univ Amsterdam, Amsterdam, Netherlands
[3] Qualcomm, San Diego, CA USA
来源
关键词
GRADIENT; LIKELIHOOD; ALGORITHMS; MODELS;
D O I
10.1561/2200000056
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational autoencoders provide a principled framework for learning deep latent-variable models and corresponding inference models. In this work, we provide an introduction to variational autoencoders and some important extensions.
引用
收藏
页码:4 / 89
页数:86
相关论文
共 50 条
  • [21] A Geometric Perspective on Variational Autoencoders
    Chadebec, Clement
    Allassonniere, Stephanie
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [22] Shedding Light on Variational Autoencoders
    Ruiz Vargas, J. C.
    Novaes, S. F.
    Cobe, R.
    Iope, R.
    Stanzani, S.
    Tomei, T. R.
    2018 XLIV LATIN AMERICAN COMPUTER CONFERENCE (CLEI 2018), 2018, : 294 - 298
  • [23] Rethinking Controllable Variational Autoencoders
    Shao, Huajie
    Yang, Yifei
    Lin, Haohong
    Lin, Longzhong
    Chen, Yizhuo
    Yang, Qinmin
    Zhao, Han
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19228 - 19237
  • [24] EXPLORING VARIATIONAL AUTOENCODERS FOR LEMMATIZATION
    Rebeja, Petru
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE LINGUISTIC RESOURCES AND TOOLS FOR NATURAL LANGUAGE PROCESSING, 2020, : 77 - 82
  • [25] Recursive Inference for Variational Autoencoders
    Kim, Minyoung
    Pavlovic, Vladimir
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [26] Variational Autoencoders: A Harmonic Perspective
    Camuto, Alexander
    Willetts, Matthew
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [27] Certifiably Robust Variational Autoencoders
    Barrett, Ben
    Camuto, Alexander
    Willetts, Matthew
    Rainforth, Tom
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [28] Variational Clustering: Leveraging Variational Autoencoders for Image Clustering
    Prasad, Vignesh
    Das, Dipanjan
    Bhowmick, Brojeshwar
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [29] Training Variational Autoencoders with Buffered Stochastic Variational Inference
    Shu, Rui
    Bui, Hung H.
    Whang, Jay
    Ermon, Stefano
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [30] Dynamic Joint Variational Graph Autoencoders
    Mahdavi, Sedigheh
    Khoshraftar, Shima
    An, Aijun
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 1167 : 385 - 401