Spectral and Spatial Algorithm Architecture for Classification of Hyperspectral and LIDAR

被引:2
|
作者
Rand, Robert S. [1 ]
Khuon, Timothy S. [1 ]
机构
[1] Natl Geospatial Intelligence Agcy, Off Innovis Bas & Appl Res, Springfield, VA 22153 USA
关键词
Sensor Fusion; Architecture; Neural Net; HSI; LIDAR; Classification; Mean-shift; Stochastic Expectation-Maximization; Imagery; Back-propagation; Perceptron; Probability of detection and false alarm;
D O I
10.1117/12.918514
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Architecture for neural net multi-sensor data fusion is introduced and analyzed. This architecture consists of a set of independent sensor neural nets, one for each sensor, coupled to a fusion net. The neural net of each sensor is trained (from a representative data set of the particular sensor) to map to a hypothesis space output. The decision outputs from the sensor nets are used to train the fusion net to an overall decision. To begin the processing, the 3D point cloud LIDAR data is classified based on a multi-dimensional mean-shift segmentation and classification into clustered objects. Similarly, the multi-band HSI data is spectrally classified by the Stochastic Expectation-Maximization (SEM) into a classification map containing pixel classes. For sensor fusion, spatial detections and spectral detections complement each other. They are fused into final detections by a cascaded neural network, which consists of two levels of neural nets. The first layer is the sensor level consisting of two neural nets: spatial neural net and spectral neural net. The second level consists of a single neural net, that is the fusion neural net. The success of the system in utilizing sensor synergism for an enhanced classification is clearly demonstrated by applying this architecture for classifying on November 2010 airborne data collection of LIDAR and HSI over the Gulfport, MS, area.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] S2EFT: Spectral-Spatial-Elevation Fusion Transformer for hyperspectral image and LiDAR classification
    Feng, Yining
    Zhu, Junheng
    Song, Ruoxi
    Wang, Xianghai
    KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [22] Spectral and Spatial Feature Fusion for Hyperspectral Image Classification
    Hao, Siyuan
    Xia, Yufeng
    Zhou, Lijian
    Ye, Yuanxin
    Wang, Wei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [23] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [24] Spectral-Spatial Constraint Hyperspectral Image Classification
    Ji, Rongrong
    Gao, Yue
    Hong, Richang
    Liu, Qiong
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03): : 1811 - 1824
  • [25] Spatial-Spectral BERT for Hyperspectral Image Classification
    Ashraf, Mahmood
    Zhou, Xichuan
    Vivone, Gemine
    Chen, Lihui
    Chen, Rong
    Majdard, Reza Seifi
    REMOTE SENSING, 2024, 16 (03)
  • [26] Spectral-Spatial Mamba for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    REMOTE SENSING, 2024, 16 (13)
  • [27] Sparse Representations for the Spectral–Spatial Classification of Hyperspectral Image
    Mohamed Ali Hamdi
    Rafika Ben Salem
    Journal of the Indian Society of Remote Sensing, 2019, 47 : 923 - 929
  • [28] Advances in Spectral-Spatial Classification of Hyperspectral Images
    Fauvel, Mathieu
    Tarabalka, Yuliya
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    Tilton, James C.
    PROCEEDINGS OF THE IEEE, 2013, 101 (03) : 652 - 675
  • [29] Hyperspectral images classification by spectral-spatial processing
    2016, Institute of Electrical and Electronics Engineers Inc., United States
  • [30] Spectral-Spatial Response for Hyperspectral Image Classification
    Wei, Yantao
    Zhou, Yicong
    Li, Hong
    REMOTE SENSING, 2017, 9 (03):