Spectral and Spatial Feature Fusion for Hyperspectral Image Classification

被引:0
|
作者
Hao, Siyuan [1 ]
Xia, Yufeng [1 ]
Zhou, Lijian [1 ]
Ye, Yuanxin [2 ]
Wang, Wei [3 ]
机构
[1] Qingdao Univ Technol, Coll Informat & Control Engn, Qingdao 266520, Peoples R China
[2] Southwest Jiaotong Univ, Fac Geosci & Environm Engn, Chengdu 610031, Peoples R China
[3] Univ Trento, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy
基金
中国国家自然科学基金;
关键词
Convolutional neural networks (CNNs); deep learning; fusion; hyperspectral image classification (HIC); remote sensing; Transformer; NETWORK;
D O I
10.1109/LGRS.2022.3223090
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Compared with traditional images, hyperspectral images (HSIs) not only have spatial information, but also have rich spectral information. However, the mainstream hyperspectral image classification (HIC) methods are all based on convolutional neural network (CNN), which has great advantages in extracting spatial features, but it has certain limitations in dealing with spectral continuous sequence information. Therefore, Transformer, which is good at processing sequences, has also been gradually applied to HIC. Besides, since HSI is typical 3-D structures, we believe that the correlation of the three dimensions is also an important information. So, in order to fully extract the spectral-spatial information, as well as the correlation of the three dimensions, we propose a spectral and spatial feature fusion module (i.e., TransCNN) for HIC. TransCNN consists of CNNs and a Transformer. The former is in charge of mining the spatial and spectral information from different dimensions, while the latter not only undertakes the most critical fusion but also captures the deeper relationship characteristics. We transpose the data to extract features and their correlation through three CNNs branches. We believe that these feature maps still have deep spectral information. Therefore, we have embedded them into 1-D vectors and use Transformer's encoder to extract features. However, some information will be lost when embedding into 1-D vectors. Therefore, we use decoder, which has been ignored in the field of vision, to fuse the features before passing encoder and the features after extracted by encoders. Two kinds of features are fused by decoder, and the obtained information is finally input into the classifier for classification. Experimental results on real HSIs show that the proposed architecture can achieve competitive performance compared with the state-of-the-art methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Feature Reduction Based on the Fusion of Spectral and Spatial Transformation for Hyperspectral Image Classification
    Hossain, Md Moazzem
    Hossain, Md Ali
    Al Mamun, Md
    Hossain, Md Mamun
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 150 - 153
  • [2] A Lightweight Spectral-Spatial Feature Extraction and Fusion Network for Hyperspectral Image Classification
    Chen, Linlin
    Wei, Zhihui
    Xu, Yang
    REMOTE SENSING, 2020, 12 (09)
  • [3] Semantic and spatial-spectral feature fusion transformer network for the classification of hyperspectral image
    Xie, Erxin
    Chen, Na
    Peng, Jiangtao
    Sun, Weiwei
    Du, Qian
    You, Xinge
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1308 - 1322
  • [4] A Multiview Spectral-Spatial Feature Extraction and Fusion Framework for Hyperspectral Image Classification
    Feng, Jia
    Zhang, Junping
    Zhang, Ye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] Superpixel Spectral-Spatial Feature Fusion Graph Convolution Network for Hyperspectral Image Classification
    Gong, Zhi
    Tong, Lei
    Zhou, Jun
    Qian, Bin
    Duan, Lijuan
    Xiao, Chuangbai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
    Cheng, Shuli
    Wang, Liejun
    Du, Anyu
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
    Shuli Cheng
    Liejun Wang
    Anyu Du
    Scientific Reports, 11
  • [8] Hyperspectral Image Spectral-Spatial Classification Method Based on Deep Adaptive Feature Fusion
    Mu, Caihong
    Liu, Yijin
    Liu, Yi
    REMOTE SENSING, 2021, 13 (04) : 1 - 21
  • [9] Dual-View Spectral and Global Spatial Feature Fusion Network for Hyperspectral Image Classification
    Guo, Tan
    Wang, Ruizhi
    Luo, Fulin
    Gong, Xiuwen
    Zhang, Lei
    Gao, Xinbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [10] Fusion of Spectral-Spatial Classifiers for Hyperspectral Image Classification
    Zhong, Shengwei
    Chen, Shuhan
    Chang, Chein-, I
    Zhang, Ye
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 5008 - 5027