Spectral and Spatial Feature Fusion for Hyperspectral Image Classification

被引:0
|
作者
Hao, Siyuan [1 ]
Xia, Yufeng [1 ]
Zhou, Lijian [1 ]
Ye, Yuanxin [2 ]
Wang, Wei [3 ]
机构
[1] Qingdao Univ Technol, Coll Informat & Control Engn, Qingdao 266520, Peoples R China
[2] Southwest Jiaotong Univ, Fac Geosci & Environm Engn, Chengdu 610031, Peoples R China
[3] Univ Trento, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy
基金
中国国家自然科学基金;
关键词
Convolutional neural networks (CNNs); deep learning; fusion; hyperspectral image classification (HIC); remote sensing; Transformer; NETWORK;
D O I
10.1109/LGRS.2022.3223090
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Compared with traditional images, hyperspectral images (HSIs) not only have spatial information, but also have rich spectral information. However, the mainstream hyperspectral image classification (HIC) methods are all based on convolutional neural network (CNN), which has great advantages in extracting spatial features, but it has certain limitations in dealing with spectral continuous sequence information. Therefore, Transformer, which is good at processing sequences, has also been gradually applied to HIC. Besides, since HSI is typical 3-D structures, we believe that the correlation of the three dimensions is also an important information. So, in order to fully extract the spectral-spatial information, as well as the correlation of the three dimensions, we propose a spectral and spatial feature fusion module (i.e., TransCNN) for HIC. TransCNN consists of CNNs and a Transformer. The former is in charge of mining the spatial and spectral information from different dimensions, while the latter not only undertakes the most critical fusion but also captures the deeper relationship characteristics. We transpose the data to extract features and their correlation through three CNNs branches. We believe that these feature maps still have deep spectral information. Therefore, we have embedded them into 1-D vectors and use Transformer's encoder to extract features. However, some information will be lost when embedding into 1-D vectors. Therefore, we use decoder, which has been ignored in the field of vision, to fuse the features before passing encoder and the features after extracted by encoders. Two kinds of features are fused by decoder, and the obtained information is finally input into the classifier for classification. Experimental results on real HSIs show that the proposed architecture can achieve competitive performance compared with the state-of-the-art methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Hyperspectral Image Classification Based on Active Learning and Spectral-Spatial Feature Fusion Using Spatial Coordinates
    Mu, Caihong
    Liu, Jian
    Liu, Yi
    Liu, Yijin
    IEEE ACCESS, 2020, 8 : 6768 - 6781
  • [12] AN IMPROVED SPECTRAL REFLECTANCE AND DERIVATIVE FEATURE FUSION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Wang, Qingyan
    Zhang, Junping
    Chen, Jiawei
    Zhang, Ye
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1696 - 1699
  • [13] Spectral Feature Fusion Networks With Dual Attention for Hyperspectral Image Classification
    Li, Xian
    Ding, Mingli
    Pizurica, Aleksandra
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [14] Multi-type spectral spatial feature for hyperspectral image classification
    Yuan, Yuan
    Jin, Mingxin
    NEUROCOMPUTING, 2022, 492 : 637 - 650
  • [15] Masked Spectral-Spatial Feature Prediction for Hyperspectral Image Classification
    Zhou, Feng
    Xu, Chao
    Yang, Guowei
    Hang, Renlong
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [16] Hyperspectral Image Classification Based on Spectral-Spatial Feature Extraction
    Ye, Zhen
    Tan, Lian
    Bai, Lin
    2017 INTERNATIONAL WORKSHOP ON REMOTE SENSING WITH INTELLIGENT PROCESSING (RSIP 2017), 2017,
  • [17] A SUBPIXEL SPATIAL-SPECTRAL FEATURE MINING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xu, Xiang
    Li, Jun
    Zhang, Yanning
    Li, Shutao
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8476 - 8479
  • [18] Spectral-Spatial Discriminant Feature Learning for Hyperspectral Image Classification
    Dong, Chunhua
    Naghedolfeizi, Masoud
    Aberra, Dawit
    Zeng, Xiangyan
    REMOTE SENSING, 2019, 11 (13)
  • [19] HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTISCALE SPATIAL AND SPECTRAL FEATURE NETWORK
    Tang, Xu
    Meng, Fanbo
    Ma, Jingjing
    Zhang, Xiangrong
    Liu, Fang
    Peng, Qunnie
    Jiao, Licheng
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 838 - 841
  • [20] Multiscale spectral-spatial feature learning for hyperspectral image classification
    Sohail, Muhammad
    Chen, Zhao
    Yang, Bin
    Liu, Guohua
    DISPLAYS, 2022, 74