Suppressing Nickel Oxide/Perovskite Interface Redox Reaction and Defects for Highly Performed and Stable Inverted Perovskite Solar Cells

被引:23
|
作者
Ahmad, Sajjad [1 ]
Ma, Ruiman [1 ]
Zheng, Jiawei [1 ]
Kwok, Cheuk Kai Gary [2 ]
Zhou, Qisen [3 ]
Ren, Zhenwei [1 ]
Kim, Jinwook [1 ]
He, Xinjun [1 ]
Zhang, Xiaoliang [3 ]
Yu, Kin Man [2 ]
Choy, Wallace C. H. [1 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Phys, Kowloon, Hong Kong, Peoples R China
[3] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
来源
SMALL METHODS | 2022年 / 6卷 / 10期
关键词
4-(2-Aminoethyl) benzoic acid bromide; interface modifications; NiOx redox reaction; stability; TOTAL-ENERGY CALCULATIONS; HOLE TRANSPORT LAYER; MOLECULAR-DYNAMICS; EFFICIENT; NIOX; TEMPERATURE; STABILITY; FILM;
D O I
10.1002/smtd.202200787
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The inorganic hole transport layer of nickel oxide (NiOx) has shown highly efficient, low-cost, and scalable in perovskite photovoltaics. However, redox reactions at the interface between NiOx and perovskites limit their commercialization. In this study, ABABr (4-(2-Aminoethyl) benzoic acid bromide) between the NiOx and different perovskite layers to address the issues has been introduced. How the ABABr interacts with NiOx and perovskites is experimentally and theoretically investigated. These results show that the ABABr molecule chemically reacts with the NiOx via electrostatic attraction on one side, whereas on the other side, it forms a strong hydrogen bond via the NH3+ group with perovskites layers, thus directly diminishing the redox reaction between the NiO, and perovskites layers and passivating the layer surfaces. Additionally, the ABABr interface modification leads to significant improvements in perovskite film morphology, crystallization, and band alignment. The perovskites solar cells (PSCs) based on an ABABr interface modification show power conversion efficiency (PCE) improvement by over 13% and maintain over 90% of its PCE after continuous operation at maximum power point for over 500 h. The work not only contributes to the development of novel interlayers for stable PSCs but also to the understanding of how to prevent interface redox reactions.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Nickel oxide for perovskite tandem solar cells
    Nie, Ting
    Cheng, Yuanhang
    Fang, Zhimin
    JOURNAL OF SEMICONDUCTORS, 2024, 45 (11)
  • [42] Increasing VOC of Inverted Inorganic Perovskite Solar Cells Through Nickel Oxide Modification
    Chen, Tianyang
    Duan, Linrui
    Luo, Jingshan
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [43] Nickel Oxide Thin Films by Radio Frequency Sputter for Inverted Perovskite Solar Cells
    Lee, Hyeonseok
    Huang, Yu-Ting
    Feng, Shien-Ping
    2017 IEEE 44TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2017, : 1012 - 1014
  • [44] Tuning Surface Oxidation States of Nickel Oxide for Efficient Inverted Perovskite Solar Cells
    Yang, Man
    Zhu, Xueliang
    Mo, Kangwei
    Li, Sheng
    Cheng, Siyang
    Liu, Yong
    Yan, Ning
    Wang, Zhiping
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (03) : 1332 - 1339
  • [45] An ionic liquid as an interface modulator for highly efficient and stable perovskite solar cells
    Chen, Xiang
    Song, Lixin
    Gu, Ningxia
    Zhang, Pengyun
    Ning, Lei
    Du, Pingfan
    Chen, Fengfeng
    Xiong, Jie
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (08) : 1992 - 2002
  • [46] Ion Compensation of Buried Interface Enables Highly Efficient and Stable Inverted MA-Free Perovskite Solar Cells
    Chen, Yu
    Shen, Yang
    Tang, Weijian
    Wu, Yihui
    Luo, Weidong
    Yuan, Ningyi
    Ding, Jianning
    Zhang, Shengli
    Zhang, Wen-Hua
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (44)
  • [47] Stable, efficient inverted perovskite solar cells enabled by the multifunctional ytterbium oxide buffer
    Manman Hu
    Sang Il Seok
    ScienceChina(Chemistry), 2024, 67 (08) : 2423 - 2424
  • [48] Stable, efficient inverted perovskite solar cells enabled by the multifunctional ytterbium oxide buffer
    Hu, Manman
    Seok, Sang Il
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (08) : 2423 - 2424
  • [49] Interface dipole at nickel oxide surface to enhance the photovoltage of perovskite solar cells
    Deng, Zhiqiang
    Zhao, Rui
    Guo, Tonghui
    Zhang, Zequn
    Xing, Yanjun
    Zhang, Jing
    Liu, Xiaohui
    Huang, Like
    Hu, Ziyang
    Zhu, Yuejin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 652
  • [50] Modification of energy levels by cetyltrimethylammonium bromide at the perovskite/carbon interface for highly efficient and stable perovskite solar cells
    Shi, Zhuonan
    Li, Shina
    Min, Changli
    Xie, Junjie
    Ma, Ruixin
    ORGANIC ELECTRONICS, 2023, 112