Suppressing Nickel Oxide/Perovskite Interface Redox Reaction and Defects for Highly Performed and Stable Inverted Perovskite Solar Cells

被引:23
|
作者
Ahmad, Sajjad [1 ]
Ma, Ruiman [1 ]
Zheng, Jiawei [1 ]
Kwok, Cheuk Kai Gary [2 ]
Zhou, Qisen [3 ]
Ren, Zhenwei [1 ]
Kim, Jinwook [1 ]
He, Xinjun [1 ]
Zhang, Xiaoliang [3 ]
Yu, Kin Man [2 ]
Choy, Wallace C. H. [1 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Phys, Kowloon, Hong Kong, Peoples R China
[3] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
来源
SMALL METHODS | 2022年 / 6卷 / 10期
关键词
4-(2-Aminoethyl) benzoic acid bromide; interface modifications; NiOx redox reaction; stability; TOTAL-ENERGY CALCULATIONS; HOLE TRANSPORT LAYER; MOLECULAR-DYNAMICS; EFFICIENT; NIOX; TEMPERATURE; STABILITY; FILM;
D O I
10.1002/smtd.202200787
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The inorganic hole transport layer of nickel oxide (NiOx) has shown highly efficient, low-cost, and scalable in perovskite photovoltaics. However, redox reactions at the interface between NiOx and perovskites limit their commercialization. In this study, ABABr (4-(2-Aminoethyl) benzoic acid bromide) between the NiOx and different perovskite layers to address the issues has been introduced. How the ABABr interacts with NiOx and perovskites is experimentally and theoretically investigated. These results show that the ABABr molecule chemically reacts with the NiOx via electrostatic attraction on one side, whereas on the other side, it forms a strong hydrogen bond via the NH3+ group with perovskites layers, thus directly diminishing the redox reaction between the NiO, and perovskites layers and passivating the layer surfaces. Additionally, the ABABr interface modification leads to significant improvements in perovskite film morphology, crystallization, and band alignment. The perovskites solar cells (PSCs) based on an ABABr interface modification show power conversion efficiency (PCE) improvement by over 13% and maintain over 90% of its PCE after continuous operation at maximum power point for over 500 h. The work not only contributes to the development of novel interlayers for stable PSCs but also to the understanding of how to prevent interface redox reactions.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Obstructing interfacial reaction between NiOx and perovskite to enable efficient and stable inverted perovskite solar cells
    Zhang, Jiaqi
    Long, Juan
    Huang, Zengqi
    Yang, Jia
    Li, Xiang
    Dai, Runying
    Sheng, Wangping
    Tan, Licheng
    Chen, Yiwang
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [22] Enhanced anchoring enables highly efficient and stable inverted perovskite solar cells
    Yin, Ran
    Wu, Rongfei
    Miao, Wenjing
    Wang, Kexiang
    Sun, Weiwei
    Huo, Xiaonan
    Sun, Yansheng
    You, Tingting
    Hao, Weichang
    Yin, Penggang
    NANO ENERGY, 2024, 125
  • [23] Hole Transport Bilayer for Highly Efficient and Stable Inverted Perovskite Solar Cells
    Javaid, Hamza
    Duzhko, Volodimyr V.
    Venkataraman, D.
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (01) : 72 - 80
  • [24] Interfacial Modification of NiOx for Highly Efficient and Stable Inverted Perovskite Solar Cells
    Zhou, Yu
    Huang, Xiaozhen
    Zhang, Jinsen
    Zhang, Lin
    Wu, Haotian
    Zhou, Ying
    Wang, Yao
    Wang, Yang
    Fu, Weifei
    Chen, Hongzheng
    ADVANCED ENERGY MATERIALS, 2024, 14 (25)
  • [25] Surface Treatment on Nickel Oxide to Enhance the Efficiency of Inverted Perovskite Solar Cells
    Wang, Kaijie
    Tian, Ye
    Jiang, Heng
    Chen, Meng
    Xu, Shuangyan
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2019, 2019
  • [26] Nickel oxide morphology synthesized with a hydrothermal method for inverted perovskite solar cells
    Chen, Hsi-chao
    Zheng, Ya-jun
    Liao, Bo-huei
    Wong, Sheng-de
    Zheng, Xin-ya
    APPLIED OPTICS, 2023, 62 (07) : B148 - B155
  • [27] Effect of surface treatment of sputtered nickel oxide in inverted perovskite solar cells
    Pandian, Muthu Gomathy M.
    Khadka, Dhruba B.
    Shirai, Yasuhiro
    Yanagida, Masatoshi
    Kitamine, Saeko
    Alghamdi, Amira R. M.
    Subashchandran, Shanthi
    Miyano, Kenjiro
    THIN SOLID FILMS, 2022, 760
  • [28] Synergistic interface and compositional engineering of inverted perovskite solar cells enables highly efficient and stable photovoltaic devices
    Zhao, Jiayuan
    Tavakoli, Rouhollah
    Tavakoli, Mohammad Mahdi
    CHEMICAL COMMUNICATIONS, 2019, 55 (62) : 9196 - 9199
  • [29] Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells
    Boyd, Caleb C.
    Shallcross, R. Clayton
    Moot, Taylor
    Kerner, Ross
    Bertoluzzi, Luca
    Onno, Arthur
    Kavadiya, Shalinee
    Chosy, Cullen
    Wolf, Eli J.
    Werner, Jeremie
    Raiford, James A.
    de Paula, Camila
    Palmstrom, Axel F.
    Yu, Zhengshan J.
    Berry, Joseph J.
    Bent, Stacey F.
    Holman, Zachary C.
    Luther, Joseph M.
    Ratcliff, Erin L.
    Armstrong, Neal R.
    McGehee, Michael D.
    JOULE, 2020, 4 (08) : 1759 - 1775
  • [30] Potassium-Doped Nickel Oxide as the Hole Transport Layer for Efficient and Stable Inverted Perovskite Solar Cells
    Chen, Po-Chih
    Yang, Sheng-Hsiung
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) : 6705 - 6713