Monte Carlo and quasi-Monte Carlo sampling methods for a class of stochastic mathematical programs with equilibrium constraints

被引:18
|
作者
Lin, Gui-Hua [1 ]
Xu, Huifu [2 ]
Fukushima, Masao [3 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
[2] Univ Southampton, Sch Math, Highfield Southamptom, England
[3] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
关键词
stochastic mathematical program with equilibrium constraints; Monte Carlo/quasi-Monte Carlo methods; penalization;
D O I
10.1007/s00186-007-0201-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider a class of stochastic mathematical programs with equilibrium constraints introduced by Birbil et al. (Math Oper Res 31:739-760, 2006). Firstly, by means of a Monte Carlo method, we obtain a nonsmooth discrete approximation of the original problem. Then, we propose a smoothing method together with a penalty technique to get a standard nonlinear programming problem. Some convergence results are established. Moreover, since quasi-Monte Carlo methods are generally faster than Monte Carlo methods, we discuss a quasi-Monte Carlo sampling approach as well. Furthermore, we give an example in economics to illustrate the model and show some numerical results with this example.
引用
收藏
页码:423 / 441
页数:19
相关论文
共 50 条
  • [41] On quasi-Monte Carlo integrations
    Sobol, IM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 103 - 112
  • [42] Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?
    Heitsch, H.
    Leoevey, H.
    Roemisch, W.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (03) : 567 - 603
  • [43] On quasi-Monte Carlo simulation of stochastic differential equations
    Hofmann, N
    Mathe, P
    MATHEMATICS OF COMPUTATION, 1997, 66 (218) : 573 - 589
  • [44] Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?
    H. Heitsch
    H. Leövey
    W. Römisch
    Computational Optimization and Applications, 2016, 65 : 567 - 603
  • [45] Monte Carlo and Quasi-Monte Carlo Density Estimation via Conditioning
    L'Ecuyer, Pierre
    Puchhammer, Florian
    Ben Abdellah, Amal
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (03) : 1729 - 1748
  • [46] Enhanced quasi-Monte Carlo methods with dimension reduction
    Imai, J
    Tan, KS
    PROCEEDINGS OF THE 2002 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2002, : 1502 - 1510
  • [47] Parallel quasi-Monte Carlo methods on a heterogeneous cluster
    Ökten, G
    Srinivasan, A
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 406 - 421
  • [48] ON QUASI-MONTE CARLO METHODS IN WEIGHTED ANOVA SPACES
    Kritzer, P.
    Pillichshammer, F.
    Wasilkowski, G. W.
    MATHEMATICS OF COMPUTATION, 2021, 90 (329) : 1381 - 1406
  • [49] Quasi-Monte Carlo simulation methods for measurement uncertainty
    Li, LM
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 356 - 367
  • [50] Distributed Quasi-Monte Carlo methods in a heterogeneous environment
    deDoncker, E.
    Zanny, R.
    Ciobanu, M.
    Guan, Y.
    2000, IEEE, United States