Monte Carlo and quasi-Monte Carlo sampling methods for a class of stochastic mathematical programs with equilibrium constraints

被引:18
|
作者
Lin, Gui-Hua [1 ]
Xu, Huifu [2 ]
Fukushima, Masao [3 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
[2] Univ Southampton, Sch Math, Highfield Southamptom, England
[3] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
关键词
stochastic mathematical program with equilibrium constraints; Monte Carlo/quasi-Monte Carlo methods; penalization;
D O I
10.1007/s00186-007-0201-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider a class of stochastic mathematical programs with equilibrium constraints introduced by Birbil et al. (Math Oper Res 31:739-760, 2006). Firstly, by means of a Monte Carlo method, we obtain a nonsmooth discrete approximation of the original problem. Then, we propose a smoothing method together with a penalty technique to get a standard nonlinear programming problem. Some convergence results are established. Moreover, since quasi-Monte Carlo methods are generally faster than Monte Carlo methods, we discuss a quasi-Monte Carlo sampling approach as well. Furthermore, we give an example in economics to illustrate the model and show some numerical results with this example.
引用
收藏
页码:423 / 441
页数:19
相关论文
共 50 条
  • [31] Quasi-Monte Carlo methods in numerical finance
    Joy, C
    Boyle, PP
    Tan, KS
    MANAGEMENT SCIENCE, 1996, 42 (06) : 926 - 938
  • [32] Quasi-Monte Carlo methods for elliptic BVPs
    Mascagni, M
    Karaivanova, A
    Hwang, CO
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 345 - 355
  • [33] IMPROVED MONTE CARLO AND QUASI-MONTE CARLO METHODS FOR THE PRICE AND THE GREEKS OF ASIAN OPTIONS
    Dingec, Kemal Dincer
    Hormann, Wolfgang
    PROCEEDINGS OF THE 2014 WINTER SIMULATION CONFERENCE (WSC), 2014, : 441 - 452
  • [34] Parameter Tuning of the Firefly Algorithm by Standard Monte Carlo and Quasi-Monte Carlo Methods
    Joy, Geethu
    Huyck, Christian
    Yang, Xin-She
    COMPUTATIONAL SCIENCE, ICCS 2024, PT V, 2024, 14836 : 242 - 253
  • [35] Quasi-Monte Carlo methods for two-stage stochastic mixed-integer programs
    H. Leövey
    W. Römisch
    Mathematical Programming, 2021, 190 : 361 - 392
  • [36] Quasi-Monte Carlo methods for two-stage stochastic mixed-integer programs
    Leovey, H.
    Roemisch, W.
    MATHEMATICAL PROGRAMMING, 2021, 190 (1-2) : 361 - 392
  • [37] QUASI-MONTE CARLO INTEGRATION
    MOROKOFF, WJ
    CAFLISCH, RE
    JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 122 (02) : 218 - 230
  • [38] Quasi-Monte Carlo Software
    Choi, Sou-Cheng T.
    Hickernell, Fred J.
    Jagadeeswaran, Rathinavel
    McCourt, Michael J.
    Sorokin, Aleksei G.
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 23 - 47
  • [39] Population Quasi-Monte Carlo
    Huang, Chaofan
    Joseph, V. Roshan
    Mak, Simon
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (03) : 695 - 708
  • [40] Langevin Quasi-Monte Carlo
    Liu, Sifan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,