Low-energy core-collapse supernovae in the frame of the jittering jets explosion mechanism

被引:6
|
作者
Gofman, Roni Anna [1 ]
Soker, Noam [1 ,2 ]
机构
[1] Technion, Dept Phys, IL-3200003 Haifa, Israel
[2] Guangdong Technion Israel Inst Technol, Shantou 515069, Guangdong, Peoples R China
基金
以色列科学基金会;
关键词
stars: jets; supernovae: general; pulsars: general; MASS-LOSS RATES; 3-DIMENSIONAL SIMULATIONS; STELLAR EVOLUTION; NEUTRINO-DRIVEN; STARS; ACCRETION; SHOCK; SASI;
D O I
10.1093/mnras/staa1197
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We relate the pre-explosion binding energy of the ejecta of core-collapse supernovae (CCSNe) of stars with masses in the lower range of CCSNe and the location of the convection zones in the pre-collapse core of these stars, to explosion properties in the frame of the jittering jets explosion mechanism. Our main conclusion is that in the frame of the jittering jets explosion mechanism the remnant of a pulsar in these low-energy CCSNe has some significance, in that the launching of jets by the newly born neutron star (NS) spins-up the NS and create a pulsar. We crudely estimated the period of the pulsars to be tens of milliseconds in these cases. The convective zones seed perturbations that lead to accretion of stochastic angular momentum that in turn is assumed to launch jittering jets in this explosion mechanism. We calculate the binding energy and the location of the convective zones with the stellar evolution code MESA. For the lowest stellar masses, we study, M-ZAMS similar or equal to 8.5-11 M-circle dot, the binding energy above the convective zones is low, and so is the expected explosion energy in the jittering jets explosion mechanism that works in a negative feedback cycle. The expected mass of the NS remnant is M-NS approximate to 1.25-1.6 M-circle dot, even for these low-energy CCSNe.
引用
收藏
页码:5902 / 5908
页数:7
相关论文
共 50 条
  • [41] Progenitors of Core-Collapse Supernovae
    Hirschi, R.
    Arnett, D.
    Cristini, A.
    Georgy, C.
    Meakin, C.
    Walkington, I.
    SUPERNOVA 1987A: 30 YEARS LLATER - COSMIC RAYS AND NUCLEI FROM SUPERNOVAE AND THEIR AFTERMATHS, 2017, 12 (S331): : 1 - 10
  • [42] Core-collapse supernovae at the threshold
    Janka, HT
    Buras, R
    Kifonidis, K
    Marek, A
    Rampp, M
    COSMIC EXPLOSIONS, 2005, 99 : 253 - 262
  • [43] Spectropolarimetry of core-collapse supernovae
    Leonard, DC
    Filippenko, AV
    1604-2004: Supernovae as Cosmological Lighthouses, 2005, 342 : 330 - 336
  • [44] The progenitors of core-collapse supernovae
    Fraser, Morgan
    LIVES AND DEATH-THROES OF MASSIVE STARS, 2017, 12 (S329): : 32 - 38
  • [45] The progenitors of core-collapse supernovae
    Eldridge, JJ
    Tout, CA
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 353 (01) : 87 - 97
  • [46] On the progenitors of core-collapse supernovae
    Leonard, Douglas C.
    ASTROPHYSICS AND SPACE SCIENCE, 2011, 336 (01) : 117 - 122
  • [47] ASPHERICAL CORE-COLLAPSE SUPERNOVAE IN RED SUPERGIANTS POWERED BY NONRELATIVISTIC JETS
    Couch, Sean M.
    Wheeler, J. Craig
    Milosavljevic, Milos
    ASTROPHYSICAL JOURNAL, 2009, 696 (01): : 953 - 970
  • [48] Theory of core-collapse supernovae
    Janka, H.-Th.
    Langanke, K.
    Marek, A.
    Martinez-Pinedo, G.
    Mueller, B.
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 442 (1-6): : 38 - 74
  • [49] Progenitors of Core-Collapse Supernovae
    Smartt, Stephen J.
    ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 47, 2009, 47 : 63 - 106
  • [50] Understanding Core-Collapse Supernovae
    Hix, W. R.
    Lentz, E. J.
    Baird, M.
    Messer, O. E. B.
    Mezzacappa, A.
    Lee, C-T
    Bruenn, S. W.
    Blondin, J. M.
    Marronetti, P.
    NUCLEAR PHYSICS A, 2010, 834 (1-4) : 602C - 607C