Low-energy core-collapse supernovae in the frame of the jittering jets explosion mechanism

被引:6
|
作者
Gofman, Roni Anna [1 ]
Soker, Noam [1 ,2 ]
机构
[1] Technion, Dept Phys, IL-3200003 Haifa, Israel
[2] Guangdong Technion Israel Inst Technol, Shantou 515069, Guangdong, Peoples R China
基金
以色列科学基金会;
关键词
stars: jets; supernovae: general; pulsars: general; MASS-LOSS RATES; 3-DIMENSIONAL SIMULATIONS; STELLAR EVOLUTION; NEUTRINO-DRIVEN; STARS; ACCRETION; SHOCK; SASI;
D O I
10.1093/mnras/staa1197
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We relate the pre-explosion binding energy of the ejecta of core-collapse supernovae (CCSNe) of stars with masses in the lower range of CCSNe and the location of the convection zones in the pre-collapse core of these stars, to explosion properties in the frame of the jittering jets explosion mechanism. Our main conclusion is that in the frame of the jittering jets explosion mechanism the remnant of a pulsar in these low-energy CCSNe has some significance, in that the launching of jets by the newly born neutron star (NS) spins-up the NS and create a pulsar. We crudely estimated the period of the pulsars to be tens of milliseconds in these cases. The convective zones seed perturbations that lead to accretion of stochastic angular momentum that in turn is assumed to launch jittering jets in this explosion mechanism. We calculate the binding energy and the location of the convective zones with the stellar evolution code MESA. For the lowest stellar masses, we study, M-ZAMS similar or equal to 8.5-11 M-circle dot, the binding energy above the convective zones is low, and so is the expected explosion energy in the jittering jets explosion mechanism that works in a negative feedback cycle. The expected mass of the NS remnant is M-NS approximate to 1.25-1.6 M-circle dot, even for these low-energy CCSNe.
引用
收藏
页码:5902 / 5908
页数:7
相关论文
共 50 条
  • [21] Post-explosion Evolution of Core-collapse Supernovae
    Witt, M.
    Psaltis, A.
    Yasin, H.
    Horn, C.
    Reichert, M.
    Kuroda, T.
    Obergaulinger, M.
    Couch, S. M.
    Arcones, A.
    ASTROPHYSICAL JOURNAL, 2021, 921 (01):
  • [22] General Relativistic Explosion Models of Core-Collapse Supernovae
    Mueller, Bernhard
    Marek, Andreas
    Janka, Hans-Thomas
    Dimmelmeier, Harald
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2011, 2011, 459 : 137 - 142
  • [23] The Core-Collapse Supernova Explosion Mechanism
    Mueller, Bernhard
    LIVES AND DEATH-THROES OF MASSIVE STARS, 2017, 12 (S329): : 17 - 24
  • [24] New developments in the mechanism for core-collapse supernovae
    Guidry, Mike
    REVISTA MEXICANA DE FISICA, 1994, 40 : 271 - 284
  • [25] Joint analysis method on gravitational waves and low-energy neutrinos to detect core-collapse supernovae
    Halim, O.
    Casentini, C.
    Drago, M.
    Fafone, V.
    Scholberg, K.
    Vigorito, C. F.
    Pagliaroli, G.
    SIXTEENTH MARCEL GROSSMANN MEETING, 2023, : 3228 - 3244
  • [26] THE PHYSICS OF THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVAE
    Pejcha, Ondrej
    Thompson, Todd A.
    ASTROPHYSICAL JOURNAL, 2012, 746 (01):
  • [27] A force explosion condition for spherically symmetric core-collapse supernovae
    Gogilashvili, Mariam
    Murphy, Jeremiah W.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 515 (02) : 1610 - 1623
  • [28] Explosion Mechanism of Core-collapse Supernovae: Role of the Si/Si-O Interface
    Boccioli, Luca
    Roberti, Lorenzo
    Limongi, Marco
    Mathews, Grant J.
    Chieffi, Alessandro
    ASTROPHYSICAL JOURNAL, 2023, 949 (01):
  • [29] A comparison of explosion energies for simulated and observed core-collapse supernovae
    Murphy, Jeremiah W.
    Mabanta, Quintin
    Dolence, Joshua C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 489 (01) : 641 - 652
  • [30] Implications of post-kick jets in core-collapse supernovae
    Soker, Noam
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 520 (03) : 4404 - 4409